IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v45y2009i3p424-435.html
   My bibliography  Save this article

Robust and efficient fitting of the generalized Pareto distribution with actuarial applications in view

Author

Listed:
  • Brazauskas, Vytaras
  • Kleefeld, Andreas

Abstract

Due to advances in extreme value theory, the generalized Pareto distribution (GPD) emerged as a natural family for modeling exceedances over a high threshold. Its importance in applications (e.g., insurance, finance, economics, engineering and numerous other fields) can hardly be overstated and is widely documented. However, despite the sound theoretical basis and wide applicability, fitting of this distribution in practice is not a trivial exercise. Traditional methods such as maximum likelihood and method-of-moments are undefined in some regions of the parameter space. Alternative approaches exist but they lack either robustness (e.g., probability-weighted moments) or efficiency (e.g., method-of-medians), or present significant numerical problems (e.g., minimum-divergence procedures). In this article, we propose a computationally tractable method for fitting the GPD, which is applicable for all parameter values and offers competitive trade-offs between robustness and efficiency. The method is based on [`]trimmed moments'. Large-sample properties of the new estimators are provided, and their small-sample behavior under several scenarios of data contamination is investigated through simulations. We also study the effect of our methodology on actuarial applications. In particular, using the new approach, we fit the GPD to the Danish insurance data and apply the fitted model to a few risk measurement and ratemaking exercises.

Suggested Citation

  • Brazauskas, Vytaras & Kleefeld, Andreas, 2009. "Robust and efficient fitting of the generalized Pareto distribution with actuarial applications in view," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 424-435, December.
  • Handle: RePEc:eee:insuma:v:45:y:2009:i:3:p:424-435
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(09)00119-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rosario Dell’Aquila & Paul Embrechts, 2006. "Extremes and Robustness: A Contradiction?," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 20(1), pages 103-118, April.
    2. Vytaras Brazauskas, 2009. "Robust and Efficient Fitting of Loss Models," North American Actuarial Journal, Taylor & Francis Journals, vol. 13(3), pages 356-369.
    3. Vytaras Brazauskas & Robert Serfling, 2000. "Robust and Efficient Estimation of the Tail Index of a Single-Parameter Pareto Distribution," North American Actuarial Journal, Taylor & Francis Journals, vol. 4(4), pages 12-27.
    4. McNeil, Alexander J., 1997. "Estimating the Tails of Loss Severity Distributions Using Extreme Value Theory," ASTIN Bulletin, Cambridge University Press, vol. 27(1), pages 117-137, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nadezhda Gribkova & Ričardas Zitikis, 2019. "Weighted allocations, their concomitant-based estimators, and asymptotics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(4), pages 811-835, August.
    2. Marc N. Conte & David L. Kelly, 2016. "An Imperfect Storm: Fat-Tailed Hurricane Damages, Insurance and Climate Policy," Working Papers 2016-01, University of Miami, Department of Economics.
    3. Conte, Marc N. & Kelly, David L., 2018. "An imperfect storm: Fat-tailed tropical cyclone damages, insurance, and climate policy," Journal of Environmental Economics and Management, Elsevier, vol. 92(C), pages 677-706.
    4. Su, Jianxi & Furman, Edward, 2017. "Multiple risk factor dependence structures: Distributional properties," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 56-68.
    5. Chao Huang & Jin-Guan Lin & Yan-Yan Ren, 2013. "Testing for the shape parameter of generalized extreme value distribution based on the $$L_q$$ -likelihood ratio statistic," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(5), pages 641-671, July.
    6. Kennickell, Arthur B., 2021. "Chasing the Tail: A Generalized Pareto Distribution Approach to Estimating Wealth Inequality," SocArXiv u3zs2, Center for Open Science.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eling, Martin, 2012. "Fitting insurance claims to skewed distributions: Are the skew-normal and skew-student good models?," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 239-248.
    2. Fung, Tsz Chai, 2022. "Maximum weighted likelihood estimator for robust heavy-tail modelling of finite mixture models," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 180-198.
    3. Hubert, Mia & Dierckx, Goedele & Vanpaemel, Dina, 2013. "Detecting influential data points for the Hill estimator in Pareto-type distributions," Computational Statistics & Data Analysis, Elsevier, vol. 65(C), pages 13-28.
    4. Okhli, Kheirolah & Jabbari Nooghabi, Mehdi, 2021. "On the contaminated exponential distribution: A theoretical Bayesian approach for modeling positive-valued insurance claim data with outliers," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    5. Gijbels, Irène & Sznajder, Dominik, 2013. "Testing tail monotonicity by constrained copula estimation," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 338-351.
    6. Igor Fedotenkov, 2020. "A Review of More than One Hundred Pareto-Tail Index Estimators," Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 245-299.
    7. S. A. Abu Bakar & Saralees Nadarajah & Z. A. Absl Kamarul Adzhar, 2018. "Loss modeling using Burr mixtures," Empirical Economics, Springer, vol. 54(4), pages 1503-1516, June.
    8. Dingshi Tian & Zongwu Cai & Ying Fang, 2018. "Econometric Modeling of Risk Measures: A Selective Review of the Recent Literature," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201807, University of Kansas, Department of Economics, revised Oct 2018.
    9. Cristina Sommacampagna, 2002. "Stima del Value-at-Risk con il Filtro di Kalman," Rivista di Politica Economica, SIPI Spa, vol. 92(6), pages 147-174, November-.
    10. Søren Asmussen & Jaakko Lehtomaa, 2017. "Distinguishing Log-Concavity from Heavy Tails," Risks, MDPI, vol. 5(1), pages 1-14, February.
    11. Martin Hrba & Matúš Maciak & Barbora Peštová & Michal Pešta, 2022. "Bootstrapping Not Independent and Not Identically Distributed Data," Mathematics, MDPI, vol. 10(24), pages 1-26, December.
    12. Frederico Caeiro & Ayana Mateus, 2023. "A New Class of Generalized Probability-Weighted Moment Estimators for the Pareto Distribution," Mathematics, MDPI, vol. 11(5), pages 1-17, February.
    13. Jose Fernandes & Augusto Hasman & Juan Ignacio Pena, 2007. "Risk premium: insights over the threshold," Applied Financial Economics, Taylor & Francis Journals, vol. 18(1), pages 41-59.
    14. Milan Stehlík & Rastislav Potocký & Helmut Waldl & Zdeněk Fabián, 2010. "On the favorable estimation for fitting heavy tailed data," Computational Statistics, Springer, vol. 25(3), pages 485-503, September.
    15. Gencay, Ramazan & Selcuk, Faruk & Ulugulyagci, Abdurrahman, 2003. "High volatility, thick tails and extreme value theory in value-at-risk estimation," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 337-356, October.
    16. Goegebeur, Yuri & Guillou, Armelle & Ho, Nguyen Khanh Le & Qin, Jing, 2020. "Robust nonparametric estimation of the conditional tail dependence coefficient," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    17. Kris Peremans & Stefan Van Aelst & Tim Verdonck, 2018. "A Robust General Multivariate Chain Ladder Method," Risks, MDPI, vol. 6(4), pages 1-18, September.
    18. Goran Andjelic & Ivana Milosev & Vladimir Djakovic, 2010. "Extreme Value Theory In Emerging Markets," Economic Annals, Faculty of Economics and Business, University of Belgrade, vol. 55(185), pages 63-106, April - J.
    19. Ibrahim Onour, "undated". "Extreme Risk and Fat-tails Distribution Model:Empirical Analysis," API-Working Paper Series 0911, Arab Planning Institute - Kuwait, Information Center.
    20. Kittiya Chaithep & Songsak Sriboonchitta & Chukiat Chaiboonsri & Pathairat Pastpipatkul, 2012. "Value at Risk Analysis of Gold Price Returns Using Extreme Value Theory," The Empirical Econometrics and Quantitative Economics Letters, Faculty of Economics, Chiang Mai University, vol. 1(4), pages 151-168, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:45:y:2009:i:3:p:424-435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.