IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v6y2018i4p108-d172919.html
   My bibliography  Save this article

A Robust General Multivariate Chain Ladder Method

Author

Listed:
  • Kris Peremans

    (Department of Mathematics, KU Leuven, Celestijnenlaan 200B, 3001 Leuven, Belgium
    These authors contributed equally to this work.)

  • Stefan Van Aelst

    (Department of Mathematics, KU Leuven, Celestijnenlaan 200B, 3001 Leuven, Belgium
    These authors contributed equally to this work.)

  • Tim Verdonck

    (Department of Mathematics, KU Leuven, Celestijnenlaan 200B, 3001 Leuven, Belgium
    These authors contributed equally to this work.)

Abstract

The chain ladder method is a popular technique to estimate the future reserves needed to handle claims that are not fully settled. Since the predictions of the aggregate portfolio (consisting of different subportfolios) do not need to be equal to the sum of the predictions of the subportfolios, a general multivariate chain ladder (GMCL) method has already been proposed. However, the GMCL method is based on the seemingly unrelated regression (SUR) technique which makes it very sensitive to outliers. To address this issue, we propose a robust alternative that estimates the SUR parameters in a more outlier resistant way. With the robust methodology it is possible to automatically flag the claims with a significantly large influence on the reserve estimates. We introduce a simulation design to generate artificial multivariate run-off triangles based on the GMCL model and illustrate the importance of taking into account contemporaneous correlations and structural connections between the run-off triangles. By adding contamination to these artificial datasets, the sensitivity of the traditional GMCL method and the good performance of the robust GMCL method is shown. From the analysis of a portfolio from practice it is clear that the robust GMCL method can provide better insight in the structure of the data.

Suggested Citation

  • Kris Peremans & Stefan Van Aelst & Tim Verdonck, 2018. "A Robust General Multivariate Chain Ladder Method," Risks, MDPI, vol. 6(4), pages 1-18, September.
  • Handle: RePEc:gam:jrisks:v:6:y:2018:i:4:p:108-:d:172919
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/6/4/108/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/6/4/108/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peremans, Kris & Van Aelst, Stefan, 2018. "Robust inference for seemingly unrelated regression models," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 212-224.
    2. Pitselis, Georgios & Grigoriadou, Vasiliki & Badounas, Ioannis, 2015. "Robust loss reserving in a log-linear model," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 14-27.
    3. Tim Verdonck & Martine Van Wouwe & Jan Dhaene, 2009. "A Robustification of the Chain-Ladder Method," North American Actuarial Journal, Taylor & Francis Journals, vol. 13(2), pages 280-298.
    4. Ajne, Björn, 1994. "Additivity of Chain-Ladder Projections," ASTIN Bulletin, Cambridge University Press, vol. 24(2), pages 311-318, November.
    5. Zhang, Yanwei, 2010. "A general multivariate chain ladder model," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 588-599, June.
    6. England, P.D. & Verrall, R.J., 2002. "Stochastic Claims Reserving in General Insurance," British Actuarial Journal, Cambridge University Press, vol. 8(3), pages 443-518, August.
    7. Michael Merz & Mario Wüthrich, 2008. "Prediction Error of the Multivariate Chain Ladder Reserving Method," North American Actuarial Journal, Taylor & Francis Journals, vol. 12(2), pages 175-197.
    8. Verdonck, T. & Van Wouwe, M., 2011. "Detection and correction of outliers in the bivariate chain-ladder method," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 188-193, September.
    9. Braun, Christian, 2004. "The Prediction Error of the Chain Ladder Method Applied to Correlated Run-off Triangles," ASTIN Bulletin, Cambridge University Press, vol. 34(2), pages 399-423, November.
    10. Vytaras Brazauskas, 2009. "Robust and Efficient Fitting of Loss Models," North American Actuarial Journal, Taylor & Francis Journals, vol. 13(3), pages 356-369.
    11. Merz, M. & Wüthrich, M. V., 2007. "Prediction Error of the Chain Ladder Reserving Method applied to Correlated Run-off Triangles," Annals of Actuarial Science, Cambridge University Press, vol. 2(1), pages 25-50, March.
    12. Verdonck, T. & Debruyne, M., 2011. "The influence of individual claims on the chain-ladder estimates: Analysis and diagnostic tool," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 85-98, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ioannis Badounas & Georgios Pitselis, 2020. "Loss Reserving Estimation With Correlated Run-Off Triangles in a Quantile Longitudinal Model," Risks, MDPI, vol. 8(1), pages 1-26, February.
    2. Kevin Kuo, 2019. "DeepTriangle: A Deep Learning Approach to Loss Reserving," Risks, MDPI, vol. 7(3), pages 1-12, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benjamin Avanzi & Mark Lavender & Greg Taylor & Bernard Wong, 2022. "Detection and treatment of outliers for multivariate robust loss reserving," Papers 2203.03874, arXiv.org, revised Jun 2023.
    2. Himchan Jeong & Dipak Dey, 2020. "Application of a Vine Copula for Multi-Line Insurance Reserving," Risks, MDPI, vol. 8(4), pages 1-23, October.
    3. Pitselis, Georgios & Grigoriadou, Vasiliki & Badounas, Ioannis, 2015. "Robust loss reserving in a log-linear model," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 14-27.
    4. Yanwei Zhang & Vanja Dukic, 2013. "Predicting Multivariate Insurance Loss Payments Under the Bayesian Copula Framework," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(4), pages 891-919, December.
    5. Portugal, Luís & Pantelous, Athanasios A. & Verrall, Richard, 2021. "Univariate and multivariate claims reserving with Generalized Link Ratios," Insurance: Mathematics and Economics, Elsevier, vol. 97(C), pages 57-67.
    6. Ioannis Badounas & Georgios Pitselis, 2020. "Loss Reserving Estimation With Correlated Run-Off Triangles in a Quantile Longitudinal Model," Risks, MDPI, vol. 8(1), pages 1-26, February.
    7. Benjamin Avanzi & Mark Lavender & Greg Taylor & Bernard Wong, 2022. "On the impact of outliers in loss reserving," Papers 2203.00184, arXiv.org, revised Jun 2023.
    8. Nataliya Chukhrova & Arne Johannssen, 2017. "State Space Models and the K alman -Filter in Stochastic Claims Reserving: Forecasting, Filtering and Smoothing," Risks, MDPI, vol. 5(2), pages 1-23, May.
    9. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
    10. Emmanuel Jordy Menvouta & Jolien Ponnet & Robin Van Oirbeek & Tim Verdonck, 2022. "mCube: Multinomial Micro-level reserving Model," Papers 2212.00101, arXiv.org.
    11. Crevecoeur, Jonas & Antonio, Katrien & Verbelen, Roel, 2019. "Modeling the number of hidden events subject to observation delay," European Journal of Operational Research, Elsevier, vol. 277(3), pages 930-944.
    12. Benjamin Avanzi & Gregory Clive Taylor & Bernard Wong & Xinda Yang, 2020. "On the modelling of multivariate counts with Cox processes and dependent shot noise intensities," Papers 2004.11169, arXiv.org, revised Dec 2020.
    13. Zhang, Yanwei, 2010. "A general multivariate chain ladder model," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 588-599, June.
    14. Douw Gerbrand Breed & Niel van Jaarsveld & Carsten Gerken & Tanja Verster & Helgard Raubenheimer, 2021. "Development of an Impairment Point in Time Probability of Default Model for Revolving Retail Credit Products: South African Case Study," Risks, MDPI, vol. 9(11), pages 1-22, November.
    15. Peng Shi, 2017. "A Multivariate Analysis of Intercompany Loss Triangles," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(2), pages 717-737, June.
    16. Klaus Schmidt, 2012. "Loss prediction based on run-off triangles," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(2), pages 265-310, June.
    17. Benjamin Avanzi & Gregory Clive Taylor & Phuong Anh Vu & Bernard Wong, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Papers 2004.06880, arXiv.org.
    18. Hahn, Lukas, 2017. "Multi-year non-life insurance risk of dependent lines of business in the multivariate additive loss reserving model," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 71-81.
    19. Verdonck, T. & Debruyne, M., 2011. "The influence of individual claims on the chain-ladder estimates: Analysis and diagnostic tool," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 85-98, January.
    20. Yannick Appert-Raullin & Laurent Devineau & Hinarii Pichevin & Philippe Tann, 2013. "One-Year Volatility of Reserve Risk in a Multivariate Framework," Working Papers hal-00848492, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:6:y:2018:i:4:p:108-:d:172919. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.