IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v28y2001i3p351-360.html
   My bibliography  Save this article

Distribution-free comparison of pricing principles

Author

Listed:
  • Hurlimann, Werner

Abstract

No abstract is available for this item.

Suggested Citation

  • Hurlimann, Werner, 2001. "Distribution-free comparison of pricing principles," Insurance: Mathematics and Economics, Elsevier, vol. 28(3), pages 351-360, June.
  • Handle: RePEc:eee:insuma:v:28:y:2001:i:3:p:351-360
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(01)00061-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Denneberg, Dieter, 1990. "Premium Calculation: Why Standard Deviation Should be Replaced by Absolute Deviation1," ASTIN Bulletin, Cambridge University Press, vol. 20(2), pages 181-190, November.
    2. Wang, Shaun, 1996. "Premium Calculation by Transforming the Layer Premium Density," ASTIN Bulletin, Cambridge University Press, vol. 26(1), pages 71-92, May.
    3. van Heerwaarden, A. E. & Kaas, R., 1992. "The Dutch premium principle," Insurance: Mathematics and Economics, Elsevier, vol. 11(2), pages 129-133, August.
    4. Ammeter, Hans, 1963. "Spreading of Exceptional Claims by Means of an Internal Stop Loss Cover," ASTIN Bulletin, Cambridge University Press, vol. 2(3), pages 380-386, April.
    5. Denuit, Michel, 1999. "The Exponential Premium Calculation Principle Revisited," ASTIN Bulletin, Cambridge University Press, vol. 29(2), pages 215-226, November.
    6. Wang, Shaun S. & Young, Virginia R. & Panjer, Harry H., 1997. "Axiomatic characterization of insurance prices," Insurance: Mathematics and Economics, Elsevier, vol. 21(2), pages 173-183, November.
    7. Shaun, Wang, 1995. "Insurance pricing and increased limits ratemaking by proportional hazards transforms," Insurance: Mathematics and Economics, Elsevier, vol. 17(1), pages 43-54, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Henryk Gzyl & Silvia Mayoral, 2006. "On a relationship between distorted and spectral risk measures," Faculty Working Papers 15/06, School of Economics and Business Administration, University of Navarra.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaluszka, Marek, 2005. "Optimal reinsurance under convex principles of premium calculation," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 375-398, June.
    2. Furman, Edward & Landsman, Zinoviy, 2010. "Multivariate Tweedie distributions and some related capital-at-risk analyses," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 351-361, April.
    3. López-Díaz, Miguel & Sordo, Miguel A. & Suárez-Llorens, Alfonso, 2012. "On the Lp-metric between a probability distribution and its distortion," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 257-264.
    4. Debora Daniela Escobar & Georg Ch. Pflug, 2020. "The distortion principle for insurance pricing: properties, identification and robustness," Annals of Operations Research, Springer, vol. 292(2), pages 771-794, September.
    5. John A. Major & Stephen J. Mildenhall, 2020. "Pricing and Capital Allocation for Multiline Insurance Firms With Finite Assets in an Imperfect Market," Papers 2008.12427, arXiv.org.
    6. Dhaene, Jan & Laeven, Roger J.A. & Zhang, Yiying, 2022. "Systemic risk: Conditional distortion risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 126-145.
    7. Hurlimann, Werner, 2006. "A note on generalized distortion risk measures," Finance Research Letters, Elsevier, vol. 3(4), pages 267-272, December.
    8. Bruce L. Jones & Ricardas Zitikis, 2005. "Testing for the order of risk measures: an application of L-statistics in actuarial science," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(2), pages 193-211.
    9. Sordo, Miguel A. & Castaño-Martínez, Antonia & Pigueiras, Gema, 2016. "A family of premium principles based on mixtures of TVaRs," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 397-405.
    10. Miryana Grigorova, 2011. "Stochastic dominance with respect to a capacity and risk measures," Working Papers hal-00639667, HAL.
    11. Hurlimann, W., 1999. "Non-optimality of a linear combination of proportional and non-proportional reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 24(3), pages 219-227, May.
    12. Stanislaw Heilpern, 2002. "Using Choquet integral in economics," Statistical Papers, Springer, vol. 43(1), pages 53-73, January.
    13. Mierzejewski, Fernando, 2007. "The Short-Run Monetary Equilibrium with Liquidity Constraints," MPRA Paper 6526, University Library of Munich, Germany.
    14. Grigorova Miryana, 2014. "Stochastic dominance with respect to a capacity and risk measures," Statistics & Risk Modeling, De Gruyter, vol. 31(3-4), pages 259-295, December.
    15. Choo, Weihao & de Jong, Piet, 2009. "Loss reserving using loss aversion functions," Insurance: Mathematics and Economics, Elsevier, vol. 45(2), pages 271-277, October.
    16. Goncalves Marcelo & Kolev Nikolai & Fabris Antonio Elias, 2008. "Bounds for Quantile-Based Risk Measures of Functions of Dependent Random Variables," Stochastics and Quality Control, De Gruyter, vol. 23(1), pages 55-70, January.
    17. Chi, Yichun & Tan, Ken Seng, 2013. "Optimal reinsurance with general premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 180-189.
    18. Lynn Wirch, Julia & Hardy, Mary R., 1999. "A synthesis of risk measures for capital adequacy," Insurance: Mathematics and Economics, Elsevier, vol. 25(3), pages 337-347, December.
    19. Francesca Greselin & Ričardas Zitikis, 2018. "From the Classical Gini Index of Income Inequality to a New Zenga-Type Relative Measure of Risk: A Modeller’s Perspective," Econometrics, MDPI, vol. 6(1), pages 1-20, January.
    20. Mierzejewski, Fernando, 2008. "The optimal liquidity principle with restricted borrowing," MPRA Paper 12549, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:28:y:2001:i:3:p:351-360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.