IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v118y2024icp59-71.html
   My bibliography  Save this article

Analytic valuation of guaranteed lifetime withdrawal benefits with a modified ratchet

Author

Listed:
  • Harcourt, Darcy
  • Daglish, Toby
  • Ulm, Eric R.

Abstract

Guaranteed Lifetime Withdrawal Benefits (GLWBs) are an increasingly popular add-on to Variable Annuities, offering a guaranteed stream of payments for the remainder of the policyholder's life. GLWBs have typically been priced using numerical methods such as finite difference schemes or Monte Carlo simulations; obtaining accurate and precise solutions using these methods can be very computationally expensive. In this paper, we extend an existing method for analytic pricing of these policies to a more general fee structure. We introduce a novel variation on the commonly offered ratchet rider that more directly addresses policyholder motivation around lapse-and-reentry behaviour. We then modify our pricing method to accommodate this new rider and compare it to the existing annual ratchet with respect to a policyholder's incentive to lapse such a policy.

Suggested Citation

  • Harcourt, Darcy & Daglish, Toby & Ulm, Eric R., 2024. "Analytic valuation of guaranteed lifetime withdrawal benefits with a modified ratchet," Insurance: Mathematics and Economics, Elsevier, vol. 118(C), pages 59-71.
  • Handle: RePEc:eee:insuma:v:118:y:2024:i:c:p:59-71
    DOI: 10.1016/j.insmatheco.2024.06.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668724000635
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2024.06.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feng, Runhuan & Jing, Xiaochen, 2017. "Analytical valuation and hedging of variable annuity guaranteed lifetime withdrawal benefits," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 36-48.
    2. Daniel Dufresne, 2007. "Fitting combinations of exponentials to probability distributions," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 23(1), pages 23-48, January.
    3. Bauer, Daniel & Kling, Alexander & Russ, Jochen, 2008. "A Universal Pricing Framework for Guaranteed Minimum Benefits in Variable Annuities 1," ASTIN Bulletin, Cambridge University Press, vol. 38(2), pages 621-651, November.
    4. Christian Knoller & Gunther Kraut & Pascal Schoenmaekers, 2016. "On the Propensity to Surrender a Variable Annuity Contract: An Empirical Analysis of Dynamic Policyholder Behavior," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 83(4), pages 979-1006, December.
    5. Ulm, Eric R., 2014. "Analytic solution for ratchet guaranteed minimum death benefit options under a variety of mortality laws," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 14-23.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Xiaoqing & Tsai, Cary Chi-Liang & Lu, Yi, 2016. "Valuing guaranteed equity-linked contracts under piecewise constant forces of mortality," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 150-161.
    2. Yaodi Yong & Hailiang Yang, 2021. "Valuation of Cliquet-Style Guarantees with Death Benefits in Jump Diffusion Models," Mathematics, MDPI, vol. 9(16), pages 1-21, August.
    3. Thorsten Moenig, 2021. "Efficient valuation of variable annuity portfolios with dynamic programming," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(4), pages 1023-1055, December.
    4. Kirkby, J. Lars & Nguyen, Duy, 2021. "Equity-linked Guaranteed Minimum Death Benefits with dollar cost averaging," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 408-428.
    5. Wenguang Yu & Yaodi Yong & Guofeng Guan & Yujuan Huang & Wen Su & Chaoran Cui, 2019. "Valuing Guaranteed Minimum Death Benefits by Cosine Series Expansion," Mathematics, MDPI, vol. 7(9), pages 1-15, September.
    6. David Landriault & Bin Li & Dongchen Li & Yumin Wang, 2021. "High‐water mark fee structure in variable annuities," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(4), pages 1057-1094, December.
    7. Zhou, Jiang & Wu, Lan, 2015. "Valuing equity-linked death benefits with a threshold expense strategy," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 79-90.
    8. Runhuan Feng & Xiaochen Jing & Jan Dhaene, 2015. "Comonotonic Approximations of Risk Measures for Variable Annuity Guaranteed Benefits with Dynamic Policyholder Behavior," Tinbergen Institute Discussion Papers 15-008/IV/DSF85, Tinbergen Institute.
    9. Zhou, Jiang & Wu, Lan, 2015. "The time of deducting fees for variable annuities under the state-dependent fee structure," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 125-134.
    10. Moenig, Thorsten, 2021. "Variable annuities: Market incompleteness and policyholder behavior," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 63-78.
    11. Feng, Runhuan & Yi, Bingji, 2019. "Quantitative modeling of risk management strategies: Stochastic reserving and hedging of variable annuity guaranteed benefits," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 60-73.
    12. Huang, Yiming & Mamon, Rogemar & Xiong, Heng, 2022. "Valuing guaranteed minimum accumulation benefits by a change of numéraire approach," Insurance: Mathematics and Economics, Elsevier, vol. 103(C), pages 1-26.
    13. Chen, Ze & Feng, Runhuan & Li, Hong & Yang, Tianyu, 2024. "Coping with longevity via hedging: Fair dynamic valuation of variable annuities," Insurance: Mathematics and Economics, Elsevier, vol. 117(C), pages 154-169.
    14. Wang, Gu & Zou, Bin, 2021. "Optimal fee structure of variable annuities," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 587-601.
    15. Post, Thomas, 2009. "Individual welfare gains from deferred life-annuities under stochastic Lee-Carter mortality," SFB 649 Discussion Papers 2009-022, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    16. David Blake & Marco Morales & Enrico Biffis & Yijia Lin & Andreas Milidonis, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 515-532, April.
    17. Zhang, Zhehao, 2018. "Renewal sums under mixtures of exponentials," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 281-301.
    18. He, Junnan & Tang, Qihe & Zhang, Huan, 2016. "Risk reducers in convex order," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 80-88.
    19. Gan, Guojun & Lin, X. Sheldon, 2015. "Valuation of large variable annuity portfolios under nested simulation: A functional data approach," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 138-150.
    20. Paolo Angelis & Roberto Marchis & Antonio L. Martire & Emilio Russo, 2022. "A flexible lattice framework for valuing options on assets paying discrete dividends and variable annuities embedding GMWB riders," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 45(1), pages 415-446, June.

    More about this item

    Keywords

    Variable annuities; Guaranteed lifetime withdrawal benefits; Analytic solution; Geometric Brownian motion with affine drift;
    All these keywords.

    JEL classification:

    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:118:y:2024:i:c:p:59-71. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.