IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v113y2023icp274-292.html
   My bibliography  Save this article

Optimal risk management with reinsurance and its counterparty risk hedging

Author

Listed:
  • Chi, Yichun
  • Hu, Tao
  • Huang, Yuxia

Abstract

In this paper, we revisit the study of an optimal risk management strategy for an insurer who wants to maximize the expected utility by purchasing reinsurance and managing reinsurance counterparty risk with a default-free hedging instrument, where the reinsurance premium is calculated by the expected value principle and the price of the hedging instrument equals the expected payoff plus a proportional loading. Different to previous studies, we exclude ex post moral hazard by imposing the no-sabotage condition on reinsurance contracts and derive the optimal strategy analytically. We find that the stop-loss reinsurance is always optimal, but the form of the optimal hedging payoff depends on the cost difference between reinsurance and hedging instrument. We further show that full risk transfer is optimal if and only if both reinsurance pricing and the hedging price are fair. Finally, numerical analyses are conducted to illustrate the effects of some interesting factors on the optimal risk management strategy.

Suggested Citation

  • Chi, Yichun & Hu, Tao & Huang, Yuxia, 2023. "Optimal risk management with reinsurance and its counterparty risk hedging," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 274-292.
  • Handle: RePEc:eee:insuma:v:113:y:2023:i:c:p:274-292
    DOI: 10.1016/j.insmatheco.2023.09.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668723000859
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2023.09.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chi, Yichun, 2019. "On The Optimality Of A Straight Deductible Under Belief Heterogeneity," ASTIN Bulletin, Cambridge University Press, vol. 49(1), pages 243-262, January.
    2. Kaluszka, Marek, 2001. "Optimal reinsurance under mean-variance premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 28(1), pages 61-67, February.
    3. Mathieu Gatumel & Sabine Lemoyne de Forges, 2013. "Understanding and Monitoring Reinsurance Counterparty Risk," Post-Print hal-00946934, HAL.
    4. Ka Chun Cheung & Ambrose Lo, 2017. "Characterizations of optimal reinsurance treaties: a cost-benefit approach," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2017(1), pages 1-28, January.
    5. MOSSIN, Jan, 1968. "Aspects of rational insurance purchasing," LIDAM Reprints CORE 23, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. Gur Huberman & David Mayers & Clifford W. Smith Jr., 1983. "Optimal Insurance Policy Indemnity Schedules," Bell Journal of Economics, The RAND Corporation, vol. 14(2), pages 415-426, Autumn.
    7. Cai, Jun & Tan, Ken Seng & Weng, Chengguo & Zhang, Yi, 2008. "Optimal reinsurance under VaR and CTE risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 185-196, August.
    8. Guillaume Carlier & Rose-Anne Dana, 2003. "Pareto efficient insurance contracts when the insurer's cost function is discontinuous," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 21(4), pages 871-893, June.
    9. Boonen, Tim J. & Jiang, Wenjun, 2022. "A marginal indemnity function approach to optimal reinsurance under the Vajda condition," European Journal of Operational Research, Elsevier, vol. 303(2), pages 928-944.
    10. Reichel, Lukas & Schmeiser, Hato & Schreiber, Florian, 2022. "On the optimal management of counterparty risk in reinsurance contracts," Journal of Economic Behavior & Organization, Elsevier, vol. 201(C), pages 374-394.
    11. Gajek, Leslaw & Zagrodny, Dariusz, 2000. "Insurer's optimal reinsurance strategies," Insurance: Mathematics and Economics, Elsevier, vol. 27(1), pages 105-112, August.
    12. Cai, Jun & Tan, Ken Seng, 2007. "Optimal Retention for a Stop-loss Reinsurance Under the VaR and CTE Risk Measures," ASTIN Bulletin, Cambridge University Press, vol. 37(1), pages 93-112, May.
    13. Zhuang, Sheng Chao & Weng, Chengguo & Tan, Ken Seng & Assa, Hirbod, 2016. "Marginal Indemnification Function formulation for optimal reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 65-76.
    14. Ohlin, Jan, 1969. "On a class of measures of dispersion with application to optimal reinsurance," ASTIN Bulletin, Cambridge University Press, vol. 5(2), pages 249-266, May.
    15. Van Heerwaarden, A. E. & Kaas, R. & Goovaerts, M. J., 1989. "Optimal reinsurance in relation to ordering of risks," Insurance: Mathematics and Economics, Elsevier, vol. 8(1), pages 11-17, March.
    16. Asimit, Alexandru V. & Badescu, Alexandru M. & Cheung, Ka Chun, 2013. "Optimal reinsurance in the presence of counterparty default risk," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 690-697.
    17. Yichun Chi & Wei Wei, 2020. "Optimal insurance with background risk: An analysis of general dependence structures," Finance and Stochastics, Springer, vol. 24(4), pages 903-937, October.
    18. repec:dau:papers:123456789/5394 is not listed on IDEAS
    19. Chi, Yichun & Tan, Ken Seng, 2011. "Optimal Reinsurance under VaR and CVaR Risk Measures: a Simplified Approach," ASTIN Bulletin, Cambridge University Press, vol. 41(2), pages 487-509, November.
    20. Olivier Mahul & Brian D. Wright, 2004. "Implications of Incomplete Performance for Optimal Insurance," Economica, London School of Economics and Political Science, vol. 71(284), pages 661-670, November.
    21. Balbás, Alejandro & Balbás, Beatriz & Heras, Antonio, 2009. "Optimal reinsurance with general risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 374-384, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chi, Yichun & Liu, Fangda, 2017. "Optimal insurance design in the presence of exclusion clauses," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 185-195.
    2. Asimit, Alexandru V. & Chi, Yichun & Hu, Junlei, 2015. "Optimal non-life reinsurance under Solvency II Regime," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 227-237.
    3. Lu, ZhiYi & Meng, LiLi & Wang, Yujin & Shen, Qingjie, 2016. "Optimal reinsurance under VaR and TVaR risk measures in the presence of reinsurer’s risk limit," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 92-100.
    4. Chi, Yichun & Weng, Chengguo, 2013. "Optimal reinsurance subject to Vajda condition," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 179-189.
    5. Zhu, Yunzhou & Chi, Yichun & Weng, Chengguo, 2014. "Multivariate reinsurance designs for minimizing an insurer’s capital requirement," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 144-155.
    6. Chi, Yichun, 2018. "Insurance choice under third degree stochastic dominance," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 198-205.
    7. Boonen, Tim J. & Tan, Ken Seng & Zhuang, Sheng Chao, 2021. "Optimal reinsurance with multiple reinsurers: Competitive pricing and coalition stability," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 302-319.
    8. Cheung, Ka Chun & He, Wanting & Wang, He, 2023. "Multi-constrained optimal reinsurance model from the duality perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 199-214.
    9. Corina Birghila & Tim J. Boonen & Mario Ghossoub, 2023. "Optimal insurance under maxmin expected utility," Finance and Stochastics, Springer, vol. 27(2), pages 467-501, April.
    10. Ghossoub, Mario & Jiang, Wenjun & Ren, Jiandong, 2022. "Pareto-optimal reinsurance under individual risk constraints," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 307-325.
    11. Chi, Yichun & Zhuang, Sheng Chao, 2020. "Optimal insurance with belief heterogeneity and incentive compatibility," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 104-114.
    12. Cui, Wei & Yang, Jingping & Wu, Lan, 2013. "Optimal reinsurance minimizing the distortion risk measure under general reinsurance premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 74-85.
    13. Boonen, Tim J. & Jiang, Wenjun, 2022. "A marginal indemnity function approach to optimal reinsurance under the Vajda condition," European Journal of Operational Research, Elsevier, vol. 303(2), pages 928-944.
    14. Zheng, Yanting & Cui, Wei, 2014. "Optimal reinsurance with premium constraint under distortion risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 109-120.
    15. Chi, Yichun & Liu, Fangda, 2021. "Enhancing an insurer's expected value by reinsurance and external financing," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 466-484.
    16. Yuxia Huang & Chuancun Yin, 2018. "A unifying approach to constrained and unconstrained optimal reinsurance," Papers 1807.06892, arXiv.org.
    17. Yichun Chi & Xun Yu Zhou & Sheng Chao Zhuang, 2020. "Variance Contracts," Papers 2008.07103, arXiv.org.
    18. Tan, Ken Seng & Weng, Chengguo & Zhang, Yi, 2011. "Optimality of general reinsurance contracts under CTE risk measure," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 175-187, September.
    19. Lu, Zhiyi & Meng, Shengwang & Liu, Leping & Han, Ziqi, 2018. "Optimal insurance design under background risk with dependence," Insurance: Mathematics and Economics, Elsevier, vol. 80(C), pages 15-28.
    20. Mi Chen & Wenyuan Wang & Ruixing Ming, 2016. "Optimal Reinsurance Under General Law-Invariant Convex Risk Measure and TVaR Premium Principle," Risks, MDPI, vol. 4(4), pages 1-12, December.

    More about this item

    Keywords

    Risk management; Counterparty risk; Hedging; Mossin's theorem; No-sabotage condition;
    All these keywords.

    JEL classification:

    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies
    • G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:113:y:2023:i:c:p:274-292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.