IDEAS home Printed from https://ideas.repec.org/a/eee/ininma/v49y2019icp502-519.html
   My bibliography  Save this article

Machine Learning based Digital Twin Framework for Production Optimization in Petrochemical Industry

Author

Listed:
  • Min, Qingfei
  • Lu, Yangguang
  • Liu, Zhiyong
  • Su, Chao
  • Wang, Bo

Abstract

Digital twins, along with the internet of things (IoT), data mining, and machine learning technologies, offer great potential in the transformation of today’s manufacturing paradigm toward intelligent manufacturing. Production control in petrochemical industry involves complex circumstances and a high demand for timeliness; therefore, agile and smart controls are important components of intelligent manufacturing in the petrochemical industry. This paper proposes a framework and approaches for constructing a digital twin based on the petrochemical industrial IoT, machine learning and a practice loop for information exchange between the physical factory and a virtual digital twin model to realize production control optimization. Unlike traditional production control approaches, this novel approach integrates machine learning and real-time industrial big data to train and optimize digital twin models. It can support petrochemical and other process manufacturing industries to dynamically adapt to the changing environment, respond in a timely manner to changes in the market due to production optimization, and improve economic benefits. Accounting for environmental characteristics, this paper provides concrete solutions for machine learning difficulties in the petrochemical industry, e.g., high data dimensions, time lags and alignment between time series data, and high demand for immediacy. The approaches were evaluated by applying them in the production unit of a petrochemical factory, and a model was trained via industrial IoT data and used to realize intelligent production control based on real-time data. A case study shows the effectiveness of this approach in the petrochemical industry.

Suggested Citation

  • Min, Qingfei & Lu, Yangguang & Liu, Zhiyong & Su, Chao & Wang, Bo, 2019. "Machine Learning based Digital Twin Framework for Production Optimization in Petrochemical Industry," International Journal of Information Management, Elsevier, vol. 49(C), pages 502-519.
  • Handle: RePEc:eee:ininma:v:49:y:2019:i:c:p:502-519
    DOI: 10.1016/j.ijinfomgt.2019.05.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0268401218311484
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijinfomgt.2019.05.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benno Gerlach & Simon Zarnitz & Benjamin Nitsche & Frank Straube, 2021. "Digital Supply Chain Twins—Conceptual Clarification, Use Cases and Benefits," Logistics, MDPI, vol. 5(4), pages 1-24, December.
    2. Jun Dong & A-Ru-Han Bao & Yao Liu & Xi-Hao Dou & Dong-Ran Liu & Gui-Yuan Xue, 2022. "Dynamic Differential Game Strategy of the Energy Big Data Ecosystem Considering Technological Innovation," Sustainability, MDPI, vol. 14(12), pages 1-24, June.
    3. Spinti, Jennifer P. & Smith, Philip J. & Smith, Sean T., 2022. "Atikokan Digital Twin: Machine learning in a biomass energy system," Applied Energy, Elsevier, vol. 310(C).
    4. Yu, Wei & Patros, Panos & Young, Brent & Klinac, Elsa & Walmsley, Timothy Gordon, 2022. "Energy digital twin technology for industrial energy management: Classification, challenges and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    5. Danny Espín-Sarzosa & Rodrigo Palma-Behnke & Felipe Valencia-Arroyave, 2023. "Towards Digital Twins of Small Productive Processes in Microgrids," Energies, MDPI, vol. 16(11), pages 1-17, May.
    6. Lim, Kendrik Yan Hong & Dang, Le Van & Chen, Chun-Hsien, 2024. "Incorporating supply and production digital twins to mitigate demand disruptions in multi-echelon networks," International Journal of Production Economics, Elsevier, vol. 273(C).
    7. Alexandra I. Khalyasmaa & Alina I. Stepanova & Stanislav A. Eroshenko & Pavel V. Matrenin, 2023. "Review of the Digital Twin Technology Applications for Electrical Equipment Lifecycle Management," Mathematics, MDPI, vol. 11(6), pages 1-23, March.
    8. Jayant Kalagnanam & Dzung T. Phan & Pavankumar Murali & Lam M. Nguyen & Nianjun Zhou & Dharmashankar Subramanian & Raju Pavuluri & Xiang Ma & Crystal Lui & Giovane Cesar da Silva, 2022. "AI-Based Real-Time Site-Wide Optimization for Process Manufacturing," Interfaces, INFORMS, vol. 52(4), pages 363-378, July.
    9. Danfeng Zhang & Xin Wang & Liang Zhao & Huaqing Xie & Chen Guo & Feizhou Qian & Hui Dong & Yun Hu, 2023. "Numerical Investigation on Heat Transfer and Flow Resistance Characteristics of Superheater in Hydrocracking Heat Recovery Steam Generator," Energies, MDPI, vol. 16(17), pages 1-15, August.
    10. Francesco Pelella & Luca Viscito & Federico Magnea & Alessandro Zanella & Stanislao Patalano & Alfonso William Mauro & Nicola Bianco, 2023. "Comparison between Physics-Based Approaches and Neural Networks for the Energy Consumption Optimization of an Automotive Production Industrial Process," Energies, MDPI, vol. 16(19), pages 1-22, September.
    11. Jiachao Peng & Hanfei Chen & Lei Jia & Shuke Fu & Jiali Tian, 2023. "Impact of Digital Industrialization on the Energy Industry Supply Chain: Evidence from the Natural Gas Industry in China," Energies, MDPI, vol. 16(4), pages 1-32, February.
    12. Mustafa Musa Jaber & Mohammed Hassan Ali & Sura Khalil Abd & Mustafa Mohammed Jassim & Ahmed Alkhayyat & Ezzulddin Hasan Kadhim & Ahmed Rashid Alkhuwaylidee & Shahad Alyousif, 2023. "RETRACTED ARTICLE: AHI: a hybrid machine learning model for complex industrial information systems," Journal of Combinatorial Optimization, Springer, vol. 45(2), pages 1-22, March.
    13. Alisha Lakra & Shubhkirti Gupta & Ravi Ranjan & Sushanta Tripathy & Deepak Singhal, 2022. "The Significance of Machine Learning in the Manufacturing Sector: An ISM Approach," Logistics, MDPI, vol. 6(4), pages 1-15, October.
    14. Gian Marco Paldino & Fabrizio De Caro & Jacopo De Stefani & Alfredo Vaccaro & Domenico Villacci & Gianluca Bontempi, 2022. "A Digital Twin Approach for Improving Estimation Accuracy in Dynamic Thermal Rating of Transmission Lines," Energies, MDPI, vol. 15(6), pages 1-17, March.
    15. Saporiti, Nicolò & Cannas, Violetta Giada & Pozzi, Rossella & Rossi, Tommaso, 2023. "Challenges and countermeasures for digital twin implementation in manufacturing plants: A Delphi study," International Journal of Production Economics, Elsevier, vol. 261(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ininma:v:49:y:2019:i:c:p:502-519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-information-management .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.