IDEAS home Printed from https://ideas.repec.org/a/eee/ininma/v37y2017i6p726-734.html
   My bibliography  Save this article

The data scientist profile and its representativeness in the European e-Competence framework and the skills framework for the information age

Author

Listed:
  • Costa, Carlos
  • Santos, Maribel Yasmina

Abstract

The activities in our current world are mainly supported by data-driven web applications, making extensive use of databases and data services. Such phenomenon led to the rise of Data Scientists as professionals of major relevance, which extract value from data and create state-of-the-art data artifacts that generate even more increased value. During the last years, the term Data Scientist attracted significant attention. Consequently, it is relevant to understand its origin, knowledge base and skills set, in order to adequately describe its profile and distinguish it from others like Business Analyst. This work proposes a conceptual model for the professional profile of a Data Scientist and evaluates the representativeness of this profile in two commonly recognized competences/skills frameworks in the field of Information and Communications Technology (ICT), namely in the European e-Competence (e-CF) framework and the Skills Framework for the Information Age (SFIA). The results indicate that a significant part of the knowledge base and skills set of Data Scientists are related with ICT competences/skills, including programming, machine learning and databases. The Data Scientist professional profile has an adequate representativeness in these two frameworks, but it is mainly seen as a multi-disciplinary profile, combining contributes from different areas, such as computer science, statistics and mathematics.

Suggested Citation

  • Costa, Carlos & Santos, Maribel Yasmina, 2017. "The data scientist profile and its representativeness in the European e-Competence framework and the skills framework for the information age," International Journal of Information Management, Elsevier, vol. 37(6), pages 726-734.
  • Handle: RePEc:eee:ininma:v:37:y:2017:i:6:p:726-734
    DOI: 10.1016/j.ijinfomgt.2017.07.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S026840121730600X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijinfomgt.2017.07.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. William S. Cleveland, 2001. "Data Science: an Action Plan for Expanding the Technical Areas of the Field of Statistics," International Statistical Review, International Statistical Institute, vol. 69(1), pages 21-26, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jimenez-Marquez, Jose Luis & Gonzalez-Carrasco, Israel & Lopez-Cuadrado, Jose Luis & Ruiz-Mezcua, Belen, 2019. "Towards a big data framework for analyzing social media content," International Journal of Information Management, Elsevier, vol. 44(C), pages 1-12.
    2. Erkan Işığıçok & Sadullah Çelik & Dilek Özdemir Yılmaz, 2023. "Analysis of Skills and Qualifications Required in Data Scientist Job Postings Based on the Pareto Analysis Perspective Using Text Mining," EKOIST Journal of Econometrics and Statistics, Istanbul University, Faculty of Economics, vol. 0(39), pages 10-25, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Situngkir, Hokky, 2015. "Indonesia embraces the Data Science," MPRA Paper 66048, University Library of Munich, Germany.
    2. Daphne R. Raban & Avishag Gordon, 2020. "The evolution of data science and big data research: A bibliometric analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(3), pages 1563-1581, March.
    3. Claude E. Concolato & Li M. Chen, 2017. "Data Science: A New Paradigm in the Age of Big-Data Science and Analytics," New Mathematics and Natural Computation (NMNC), World Scientific Publishing Co. Pte. Ltd., vol. 13(02), pages 119-143, July.
    4. Nils Hachmeister & Katharina Weiß & Juliane Theiß & Reinhold Decker, 2021. "Balancing Plurality and Educational Essence: Higher Education Between Data-Competent Professionals and Data Self-Empowered Citizens," Data, MDPI, vol. 6(2), pages 1-15, January.
    5. Serena Ng, 2017. "Opportunities and Challenges: Lessons from Analyzing Terabytes of Scanner Data," NBER Working Papers 23673, National Bureau of Economic Research, Inc.
    6. Ulrich Rendtel & Willi Seidel & Christine Müller & Florian Meinfelder & Joachim Wagner & Jürgen Chlumsky & Markus Zwick, 2022. "Statistik zwischen Data Science, Artificial Intelligence und Big Data: Beiträge aus dem Kolloquium „Make Statistics great again“ [Statistics between data science, artificial intelligence and big da," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 16(2), pages 97-147, June.
    7. Stephan R. Sain, 2023. "Data science and climate risk analytics," Environmetrics, John Wiley & Sons, Ltd., vol. 34(2), March.
    8. Hassani, Hossein & Beneki, Christina & Silva, Emmanuel Sirimal & Vandeput, Nicolas & Madsen, Dag Øivind, 2021. "The science of statistics versus data science: What is the future?," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    9. Shalini R. Urs & Mohamed Minhaj, 2023. "Evolution of data science and its education in iSchools: An impressionistic study using curriculum analysis," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(6), pages 606-622, June.
    10. Göran Kauermann & Helmut Küchenhoff, 2016. "Statistik, Data Science und Big Data [Statistics, data science, and big data]," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 10(2), pages 141-150, October.
    11. Jennifer Lewis Priestley & Robert J. McGrath, 2019. "The Evolution of Data Science: A New Mode of Knowledge Production," International Journal of Knowledge Management (IJKM), IGI Global, vol. 15(2), pages 97-109, April.
    12. Marynia Kolak, 2018. "Ian Foster, Rayid Ghani, Ron S Jarmin, et al. (eds), Big data and social science: A practical guide to methods and tools," Environment and Planning B, , vol. 45(2), pages 388-389, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ininma:v:37:y:2017:i:6:p:726-734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-information-management .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.