IDEAS home Printed from https://ideas.repec.org/a/spr/astaws/v10y2016i2d10.1007_s11943-016-0188-y.html
   My bibliography  Save this article

Statistik, Data Science und Big Data
[Statistics, data science, and big data]

Author

Listed:
  • Göran Kauermann

    (Ludwig-Maximilians-Universität München)

  • Helmut Küchenhoff

Abstract

Zusammenfassung In unserem Beitrag beleuchten wir die Rolle von Statistik und Data Science im Umfeld von Big Data. Data Science liegt dabei zwischen Statistik und Informatik und vereint die unterschiedlichen Konzepte der Datenanalyse. Wir zeigen anhand von zwei Beispielen auf, warum Statistik und statistisches Denken auch im Zeitalter von Big Data wichtig und hilfreich ist.

Suggested Citation

  • Göran Kauermann & Helmut Küchenhoff, 2016. "Statistik, Data Science und Big Data [Statistics, data science, and big data]," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 10(2), pages 141-150, October.
  • Handle: RePEc:spr:astaws:v:10:y:2016:i:2:d:10.1007_s11943-016-0188-y
    DOI: 10.1007/s11943-016-0188-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11943-016-0188-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11943-016-0188-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. William S. Cleveland, 2001. "Data Science: an Action Plan for Expanding the Technical Areas of the Field of Statistics," International Statistical Review, International Statistical Institute, vol. 69(1), pages 21-26, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ulrich Rendtel & Willi Seidel & Christine Müller & Florian Meinfelder & Joachim Wagner & Jürgen Chlumsky & Markus Zwick, 2022. "Statistik zwischen Data Science, Artificial Intelligence und Big Data: Beiträge aus dem Kolloquium „Make Statistics great again“ [Statistics between data science, artificial intelligence and big da," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 16(2), pages 97-147, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Situngkir, Hokky, 2015. "Indonesia embraces the Data Science," MPRA Paper 66048, University Library of Munich, Germany.
    2. Costa, Carlos & Santos, Maribel Yasmina, 2017. "The data scientist profile and its representativeness in the European e-Competence framework and the skills framework for the information age," International Journal of Information Management, Elsevier, vol. 37(6), pages 726-734.
    3. Daphne R. Raban & Avishag Gordon, 2020. "The evolution of data science and big data research: A bibliometric analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(3), pages 1563-1581, March.
    4. Claude E. Concolato & Li M. Chen, 2017. "Data Science: A New Paradigm in the Age of Big-Data Science and Analytics," New Mathematics and Natural Computation (NMNC), World Scientific Publishing Co. Pte. Ltd., vol. 13(02), pages 119-143, July.
    5. Nils Hachmeister & Katharina Weiß & Juliane Theiß & Reinhold Decker, 2021. "Balancing Plurality and Educational Essence: Higher Education Between Data-Competent Professionals and Data Self-Empowered Citizens," Data, MDPI, vol. 6(2), pages 1-15, January.
    6. Serena Ng, 2017. "Opportunities and Challenges: Lessons from Analyzing Terabytes of Scanner Data," NBER Working Papers 23673, National Bureau of Economic Research, Inc.
    7. Ulrich Rendtel & Willi Seidel & Christine Müller & Florian Meinfelder & Joachim Wagner & Jürgen Chlumsky & Markus Zwick, 2022. "Statistik zwischen Data Science, Artificial Intelligence und Big Data: Beiträge aus dem Kolloquium „Make Statistics great again“ [Statistics between data science, artificial intelligence and big da," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 16(2), pages 97-147, June.
    8. Stephan R. Sain, 2023. "Data science and climate risk analytics," Environmetrics, John Wiley & Sons, Ltd., vol. 34(2), March.
    9. Hassani, Hossein & Beneki, Christina & Silva, Emmanuel Sirimal & Vandeput, Nicolas & Madsen, Dag Øivind, 2021. "The science of statistics versus data science: What is the future?," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    10. Shalini R. Urs & Mohamed Minhaj, 2023. "Evolution of data science and its education in iSchools: An impressionistic study using curriculum analysis," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(6), pages 606-622, June.
    11. Jennifer Lewis Priestley & Robert J. McGrath, 2019. "The Evolution of Data Science: A New Mode of Knowledge Production," International Journal of Knowledge Management (IJKM), IGI Global, vol. 15(2), pages 97-109, April.
    12. Marynia Kolak, 2018. "Ian Foster, Rayid Ghani, Ron S Jarmin, et al. (eds), Big data and social science: A practical guide to methods and tools," Environment and Planning B, , vol. 45(2), pages 388-389, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:astaws:v:10:y:2016:i:2:d:10.1007_s11943-016-0188-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.