Statistik, Data Science und Big Data
[Statistics, data science, and big data]
Author
Abstract
Suggested Citation
DOI: 10.1007/s11943-016-0188-y
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- William S. Cleveland, 2001. "Data Science: an Action Plan for Expanding the Technical Areas of the Field of Statistics," International Statistical Review, International Statistical Institute, vol. 69(1), pages 21-26, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ulrich Rendtel & Willi Seidel & Christine Müller & Florian Meinfelder & Joachim Wagner & Jürgen Chlumsky & Markus Zwick, 2022. "Statistik zwischen Data Science, Artificial Intelligence und Big Data: Beiträge aus dem Kolloquium „Make Statistics great again“ [Statistics between data science, artificial intelligence and big da," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 16(2), pages 97-147, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Situngkir, Hokky, 2015. "Indonesia embraces the Data Science," MPRA Paper 66048, University Library of Munich, Germany.
- Costa, Carlos & Santos, Maribel Yasmina, 2017. "The data scientist profile and its representativeness in the European e-Competence framework and the skills framework for the information age," International Journal of Information Management, Elsevier, vol. 37(6), pages 726-734.
- Daphne R. Raban & Avishag Gordon, 2020. "The evolution of data science and big data research: A bibliometric analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(3), pages 1563-1581, March.
- Nils Hachmeister & Katharina Weiß & Juliane Theiß & Reinhold Decker, 2021. "Balancing Plurality and Educational Essence: Higher Education Between Data-Competent Professionals and Data Self-Empowered Citizens," Data, MDPI, vol. 6(2), pages 1-15, January.
- Serena Ng, 2017. "Opportunities and Challenges: Lessons from Analyzing Terabytes of Scanner Data," NBER Working Papers 23673, National Bureau of Economic Research, Inc.
- Stephan R. Sain, 2023. "Data science and climate risk analytics," Environmetrics, John Wiley & Sons, Ltd., vol. 34(2), March.
- Hassani, Hossein & Beneki, Christina & Silva, Emmanuel Sirimal & Vandeput, Nicolas & Madsen, Dag Øivind, 2021. "The science of statistics versus data science: What is the future?," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
- Jennifer Lewis Priestley & Robert J. McGrath, 2019. "The Evolution of Data Science: A New Mode of Knowledge Production," International Journal of Knowledge Management (IJKM), IGI Global, vol. 15(2), pages 97-109, April.
- Claude E. Concolato & Li M. Chen, 2017. "Data Science: A New Paradigm in the Age of Big-Data Science and Analytics," New Mathematics and Natural Computation (NMNC), World Scientific Publishing Co. Pte. Ltd., vol. 13(02), pages 119-143, July.
- Ulrich Rendtel & Willi Seidel & Christine Müller & Florian Meinfelder & Joachim Wagner & Jürgen Chlumsky & Markus Zwick, 2022. "Statistik zwischen Data Science, Artificial Intelligence und Big Data: Beiträge aus dem Kolloquium „Make Statistics great again“ [Statistics between data science, artificial intelligence and big da," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 16(2), pages 97-147, June.
- Shalini R. Urs & Mohamed Minhaj, 2023. "Evolution of data science and its education in iSchools: An impressionistic study using curriculum analysis," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(6), pages 606-622, June.
- Marynia Kolak, 2018. "Ian Foster, Rayid Ghani, Ron S Jarmin, et al. (eds), Big data and social science: A practical guide to methods and tools," Environment and Planning B, , vol. 45(2), pages 388-389, March.
More about this item
Keywords
Big Data; Statistisches Denken; Informatik;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:astaws:v:10:y:2016:i:2:d:10.1007_s11943-016-0188-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.