IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v4y2010i2p194-200.html
   My bibliography  Save this article

Combining commercial citation indexes and open-access bibliographic databases to delimit highly interdisciplinary research fields for citation analysis

Author

Listed:
  • Strotmann, Andreas
  • Zhao, Dangzhi

Abstract

Field delimitation for citation analysis, the process of collecting a set of bibliographic records with cited-reference information of research articles that represent a research field, is the first step in any citation analysis study of a research field. Due to a number of limitations, the commercial citation indexes have long made it difficult to obtain a comprehensive dataset in this step. This paper discusses some of the limitations imposed by these databases, and reports on a method to overcome some of these limitations that was used with great success to delimit an emerging and highly interdisciplinary biomedical research field, stem cell research. The resulting field delimitation and the citation network it induces are both excellent. This multi-database method relies on using PubMed for the actual field delimitation, and on mapping between Scopus and PubMed records for obtaining comprehensive information about cited-references contained in the resulting literature. This method provides high-quality field delimitations for citation studies that can be used as benchmarks for studies of the impact of data collection biases on citation metrics, and may help improve confidence in results of scientometric studies for an increased impact of scientometrics on research policy.

Suggested Citation

  • Strotmann, Andreas & Zhao, Dangzhi, 2010. "Combining commercial citation indexes and open-access bibliographic databases to delimit highly interdisciplinary research fields for citation analysis," Journal of Informetrics, Elsevier, vol. 4(2), pages 194-200.
  • Handle: RePEc:eee:infome:v:4:y:2010:i:2:p:194-200
    DOI: 10.1016/j.joi.2009.12.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157709000972
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2009.12.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Ingwersen & Finn Hjortgaard Christensen, 1997. "Data set isolation for bibliometric online analyses of research publications: Fundamental methodological issues," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 48(3), pages 205-217, March.
    2. Olle Persson, 2001. "All author citations versus first author citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 50(2), pages 339-344, February.
    3. Zhao, Dangzhi & Strotmann, Andreas, 2008. "Comparing all-author and first-author co-citation analyses of information science," Journal of Informetrics, Elsevier, vol. 2(3), pages 229-239.
    4. Jesper W. Schneider & Birger Larsen & Peter Ingwersen, 2009. "A comparative study of first and all-author co-citation counting, and two different matrix generation approaches applied for author co-citation analyses," Scientometrics, Springer;Akadémiai Kiadó, vol. 80(1), pages 103-130, July.
    5. Jian Qin, 2000. "Semantic similarities between a keyword database and a controlled vocabulary database: An investigation in the antibiotic resistance literature," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 51(2), pages 166-180.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lutz Bornmann & Klaus Wohlrabe, 2019. "Normalisation of citation impact in economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(2), pages 841-884, August.
    2. Bornmann, Lutz & Haunschild, Robin & Mutz, Rüdiger, 2020. "Should citations be field-normalized in evaluative bibliometrics? An empirical analysis based on propensity score matching," Journal of Informetrics, Elsevier, vol. 14(4).
    3. Bornmann, Lutz & Haunschild, Robin, 2022. "Empirical analysis of recent temporal dynamics of research fields: Annual publications in chemistry and related areas as an example," Journal of Informetrics, Elsevier, vol. 16(2).
    4. Colliander, Cristian & Ahlgren, Per, 2011. "The effects and their stability of field normalization baseline on relative performance with respect to citation impact: A case study of 20 natural science departments," Journal of Informetrics, Elsevier, vol. 5(1), pages 101-113.
    5. Tomaz Bartol & Karmen Stopar, 2015. "Nano language and distribution of article title terms according to power laws," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(2), pages 435-451, May.
    6. Dangzhi Zhao & Andreas Strotmann, 2011. "Intellectual structure of stem cell research: a comprehensive author co-citation analysis of a highly collaborative and multidisciplinary field," Scientometrics, Springer;Akadémiai Kiadó, vol. 87(1), pages 115-131, April.
    7. Haunschild, Robin & Daniels, Angela D. & Bornmann, Lutz, 2022. "Scores of a specific field-normalized indicator calculated with different approaches of field-categorization: Are the scores different or similar?," Journal of Informetrics, Elsevier, vol. 16(1).
    8. Bornmann, Lutz & Haunschild, Robin, 2016. "Citation score normalized by cited references (CSNCR): The introduction of a new citation impact indicator," Journal of Informetrics, Elsevier, vol. 10(3), pages 875-887.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Feifei & Jia, Chenran & Wang, Xiaohan & Liu, Junwan & Xu, Shuo & Liu, Yang & Yang, Chenyuyan, 2019. "Exploring all-author tripartite citation networks: A case study of gene editing," Journal of Informetrics, Elsevier, vol. 13(3), pages 856-873.
    2. Jeong, Yoo Kyung & Song, Min & Ding, Ying, 2014. "Content-based author co-citation analysis," Journal of Informetrics, Elsevier, vol. 8(1), pages 197-211.
    3. Yi Bu & Tian-yi Liu & Win-bin Huang, 2016. "MACA: a modified author co-citation analysis method combined with general descriptive metadata of citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(1), pages 143-166, July.
    4. Yi Bu & Binglu Wang & Win-bin Huang & Shangkun Che & Yong Huang, 2018. "Using the appearance of citations in full text on author co-citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 275-289, July.
    5. Jun-Ping Qiu & Ke Dong & Hou-Qiang Yu, 2014. "Comparative study on structure and correlation among author co-occurrence networks in bibliometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1345-1360, November.
    6. Persson, Olle, 2010. "Identifying research themes with weighted direct citation links," Journal of Informetrics, Elsevier, vol. 4(3), pages 415-422.
    7. Perianes-Rodriguez, Antonio & Waltman, Ludo & van Eck, Nees Jan, 2016. "Constructing bibliometric networks: A comparison between full and fractional counting," Journal of Informetrics, Elsevier, vol. 10(4), pages 1178-1195.
    8. Jianhua Hou & Xiucai Yang & Chaomei Chen, 2018. "Emerging trends and new developments in information science: a document co-citation analysis (2009–2016)," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 869-892, May.
    9. Song Yanhui & Wu Lijuan & Qiu Junping, 2021. "A comparative study of first and all-author bibliographic coupling analysis based on Scientometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1125-1147, February.
    10. Ruimin Ma & Erjia Yan, 2016. "Uncovering inter-specialty knowledge communication using author citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(2), pages 839-854, November.
    11. Bu, Yi & Ni, Shaokang & Huang, Win-bin, 2017. "Combining multiple scholarly relationships with author cocitation analysis: A preliminary exploration on improving knowledge domain mappings," Journal of Informetrics, Elsevier, vol. 11(3), pages 810-822.
    12. Frid-Nielsen, Snorre Sylvester & Rubin, Olivier & Baekkeskov, Erik, 2019. "The state of social science research on antimicrobial resistance," Social Science & Medicine, Elsevier, vol. 242(C).
    13. Rey-Long Liu, 2017. "A new bibliographic coupling measure with descriptive capability," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(2), pages 915-935, February.
    14. Dangzhi Zhao & Andreas Strotmann, 2020. "Telescopic and panoramic views of library and information science research 2011–2018: a comparison of four weighting schemes for author co-citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 255-270, July.
    15. van Eck, N.J.P. & Waltman, L., 2009. "How to Normalize Co-Occurrence Data? An Analysis of Some Well-Known Similarity Measures," ERIM Report Series Research in Management ERS-2009-001-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    16. Yang, Siluo & Han, Ruizhen & Wolfram, Dietmar & Zhao, Yuehua, 2016. "Visualizing the intellectual structure of information science (2006–2015): Introducing author keyword coupling analysis," Journal of Informetrics, Elsevier, vol. 10(1), pages 132-150.
    17. Jesper W. Schneider & Birger Larsen & Peter Ingwersen, 2009. "A comparative study of first and all-author co-citation counting, and two different matrix generation approaches applied for author co-citation analyses," Scientometrics, Springer;Akadémiai Kiadó, vol. 80(1), pages 103-130, July.
    18. Kim, Ha Jin & Jeong, Yoo Kyung & Song, Min, 2016. "Content- and proximity-based author co-citation analysis using citation sentences," Journal of Informetrics, Elsevier, vol. 10(4), pages 954-966.
    19. Mikkel Christoffersen, 2004. "Identifying core documents with a multiple evidence relevance filter," Scientometrics, Springer;Akadémiai Kiadó, vol. 61(3), pages 385-394, November.
    20. William W. Hood & Concepción S. Wilson, 2003. "Informetric studies using databases: Opportunities and challenges," Scientometrics, Springer;Akadémiai Kiadó, vol. 58(3), pages 587-608, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:4:y:2010:i:2:p:194-200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.