IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v4y2010i1p89-96.html
   My bibliography  Save this article

Analysis of cooperative research and development networks on Japanese patents

Author

Listed:
  • Inoue, Hiroyasu
  • Souma, Wataru
  • Tamada, Schumpeter

Abstract

To sustain economic growth, countries have to manage systems in order to create technological innovation. To meet this goal, they are developing policies that organically connect companies, national laboratories, and universities into innovation networks. However, the whole structures of these connections have been little investigated because of the difficulty of obtaining such data.

Suggested Citation

  • Inoue, Hiroyasu & Souma, Wataru & Tamada, Schumpeter, 2010. "Analysis of cooperative research and development networks on Japanese patents," Journal of Informetrics, Elsevier, vol. 4(1), pages 89-96.
  • Handle: RePEc:eee:infome:v:4:y:2010:i:1:p:89-96
    DOI: 10.1016/j.joi.2009.09.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S175115770900073X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2009.09.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schumpeter Tamada & Yusuke Naito & Fumio Kodama & Kiminori Gemba & Jun Suzuki, 2006. "Significant difference of dependence upon scientific knowledge among different technologies," Scientometrics, Springer;Akadémiai Kiadó, vol. 68(2), pages 289-302, August.
    2. Inoue, Hiroyasu & Souma, Wataru & Tamada, Schumpeter, 2007. "Spatial characteristics of joint application networks in Japanese patents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(1), pages 152-157.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen, Jinyan & Qualls, William J. & Zeng, Deming, 2021. "To explore or exploit: The influence of inter-firm R&D network diversity and structural holes on innovation outcomes," Technovation, Elsevier, vol. 100(C).
    2. Zhao, Star X. & Ye, Fred Y., 2012. "Exploring the directed h-degree in directed weighted networks," Journal of Informetrics, Elsevier, vol. 6(4), pages 619-630.
    3. Pinto, Pablo E. & Vallone, Andres & Honores, Guillermo, 2019. "The structure of collaboration networks: Findings from three decades of co-invention patents in Chile," Journal of Informetrics, Elsevier, vol. 13(4).
    4. Carlo Giglio & Gianluca Salvatore Vocaturo & Roberto Palmieri, 2023. "Patent Acquisitions in the Healthcare Industry: An Analysis of Learning Mechanisms," IJERPH, MDPI, vol. 20(5), pages 1-13, February.
    5. Lizhi Xing & Qing Ye & Jun Guan, 2016. "Spreading Effect in Industrial Complex Network Based on Revised Structural Holes Theory," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-18, May.
    6. Carlo Giglio & Roberto Sbragia & Roberto Musmanno & Roberto Palmieri, 2021. "Cross-country learning from patents: an analysis of citations flows in innovation trajectories," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7917-7936, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suma Athreye & Martha Prevezer, 2008. "R&D offshoring and the domestic science base in India and China," Working Papers 26, Queen Mary, University of London, School of Business and Management, Centre for Globalisation Research.
    2. Weiwei Liu & Yuan Tao & Zhile Yang & Kexin Bi, 2019. "Exploring and Visualizing the Patent Collaboration Network: A Case Study of Smart Grid Field in China," Sustainability, MDPI, vol. 11(2), pages 1-18, January.
    3. Huang, Mu-Hsuan & Huang, Wei-Tzu & Chen, Dar-Zen, 2014. "Technological impact factor: An indicator to measure the impact of academic publications on practical innovation," Journal of Informetrics, Elsevier, vol. 8(1), pages 241-251.
    4. Bryan, Kevin A. & Ozcan, Yasin & Sampat, Bhaven, 2020. "In-text patent citations: A user's guide," Research Policy, Elsevier, vol. 49(4).
    5. Noriko Yoda & Kenichi Kuwashima, 2020. "Triple Helix of University–Industry–Government Relations in Japan: Transitions of Collaborations and Interactions," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 11(3), pages 1120-1144, September.
    6. Goto, Akira & Motohashi, Kazuyuki, 2007. "Construction of a Japanese Patent Database and a first look at Japanese patenting activities," Research Policy, Elsevier, vol. 36(9), pages 1431-1442, November.
    7. onder Nomaler & Bart Verspagen, 2008. "Knowledge Flows, Patent Citations and the Impact of Science on Technology," Economic Systems Research, Taylor & Francis Journals, vol. 20(4), pages 339-366.
    8. Yilei Pan & Mengying Chang & Shumin Feng & Dongsheng Hao, 2023. "Modeling and Complex Characteristics of Urban Subway Co-Opetition Network: A Case Study of Wuhan," Sustainability, MDPI, vol. 15(1), pages 1-17, January.
    9. Miguel A. Ortiz Acuña & Adiel T. Almeida Filho & Francisco S. Ramos, 2024. "Modelling the triple helix system innovation of the main economies from Latin America: a coalitional game theory approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(6), pages 3245-3270, June.
    10. Byeongdeuk Jang & Jae-Yong Choung & Inje Kang, 2022. "Knowledge production patterns of China and the US: quantum technology," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(10), pages 5691-5719, October.
    11. IKEUCHI Kenta & MOTOHASHI Kazuyuki & TAMURA Ryuichi & TSUKADA Naotoshi, 2017. "Measuring Science Intensity of Industry using Linked Dataset of Science, Technology and Industry," Discussion papers 17056, Research Institute of Economy, Trade and Industry (RIETI).
    12. Inoue, Hiroyasu, 2014. "A two-layer team-assembly model for invention networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 181-188.
    13. Suzuki, Jun, 2011. "Structural modeling of the value of patent," Research Policy, Elsevier, vol. 40(7), pages 986-1000, September.
    14. Ekaterina Albats & Irina Fiegenbaum & James A. Cunningham, 2018. "A micro level study of university industry collaborative lifecycle key performance indicators," The Journal of Technology Transfer, Springer, vol. 43(2), pages 389-431, April.
    15. Xia Gao & Jiancheng Guan, 2009. "Networks of scientific journals: An exploration of Chinese patent data," Scientometrics, Springer;Akadémiai Kiadó, vol. 80(1), pages 283-302, July.
    16. Gurney, Thomas & Horlings, Edwin & van den Besselaar, Peter & Sumikura, Koichi & Schoen, Antoine & Laurens, Patricia & Pardo, Daniel, 2014. "Analysing knowledge capture mechanisms: Methods and a stylised bioventure case," Journal of Informetrics, Elsevier, vol. 8(1), pages 259-272.
    17. Ryuichi Tamura, 2017. "The Effect of High-speed Railways on Knowledge Transfer: Evidence from Japanese Patent Citations," Public Policy Review, Policy Research Institute, Ministry of Finance Japan, vol. 13(3), pages 325-342, November.
    18. Chihmao Hsieh, 2011. "Explicitly searching for useful inventions: dynamic relatedness and the costs of connecting versus synthesizing," Scientometrics, Springer;Akadémiai Kiadó, vol. 86(2), pages 381-404, February.
    19. MOTOHASHI Kazuyuki & TOMOZAWA Takanori, 2014. "Differences in Science Based Innovation by Technology Life Cycles: The case of solar cell technology," Discussion papers 14005, Research Institute of Economy, Trade and Industry (RIETI).
    20. Alfonso Ávila-Robinson & Shintaro Sengoku, 2017. "Tracing the knowledge-building dynamics in new stem cell technologies through techno-scientific networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1691-1720, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:4:y:2010:i:1:p:89-96. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.