IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v127y2022i11d10.1007_s11192-021-04242-0.html
   My bibliography  Save this article

Towards employing native information in citation function classification

Author

Listed:
  • Yang Zhang

    (Wuhan University
    Macquarie University)

  • Rongying Zhao

    (Wuhan University)

  • Yufei Wang

    (Macquarie University)

  • Haihua Chen

    (University of North Texas)

  • Adnan Mahmood

    (Macquarie University)

  • Munazza Zaib

    (Macquarie University)

  • Wei Emma Zhang

    (The University of Adelaide)

  • Quan Z. Sheng

    (Macquarie University)

Abstract

Citations play a fundamental role in supporting authors’ contribution claims throughout a scientific paper. Labelling citation instances with different function labels is indispensable for understanding a scientific text. A single citation is the linkage between two scientific papers in the citation network. These citations encompass rich native information, including context of the citation, citation location, citing and cited paper titles, DOI, and the website’s URL. Nevertheless, previous studies have ignored such rich native information during the process of datasets’ accumulation, thereby resulting in a lack of comprehensive yet significantly valuable features for the citation function classification task. In this paper, we argue that such important information should not be ignored, and accordingly, we extract and integrate all of the native information features into different neural text representation models via trainable embeddings and free text. We first construct a new dataset entitled, NI-Cite, comprising a large number of labelled citations with five key native features (Citation Context, Section Name, Title, DOI, Web URL) against each dataset instance. In addition, we propose to exploit the recently developed text representation models integrated with such information to evaluate the performance of citation function classification task. The experimental results demonstrate that the native information features suggested in this paper enhance the overall classification performance.

Suggested Citation

  • Yang Zhang & Rongying Zhao & Yufei Wang & Haihua Chen & Adnan Mahmood & Munazza Zaib & Wei Emma Zhang & Quan Z. Sheng, 2022. "Towards employing native information in citation function classification," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6557-6577, November.
  • Handle: RePEc:spr:scient:v:127:y:2022:i:11:d:10.1007_s11192-021-04242-0
    DOI: 10.1007/s11192-021-04242-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-021-04242-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-021-04242-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marc Bertin & Iana Atanassova & Yves Gingras & Vincent Larivière, 2016. "The invariant distribution of references in scientific articles," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(1), pages 164-177, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi Zhang & Chengzhi Zhang & Philipp Mayr & Arho Suominen, 2022. "An editorial of “AI + informetrics”: multi-disciplinary interactions in the era of big data," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6503-6507, November.
    2. Li, Xin & Tang, Xuli & Lu, Wei, 2024. "Investigating clinical links in edge-labeled citation networks of biomedical research: A translational science perspective," Journal of Informetrics, Elsevier, vol. 18(3).
    3. Percia David, Dimitri & Maréchal, Loïc & Lacube, William & Gillard, Sébastien & Tsesmelis, Michael & Maillart, Thomas & Mermoud, Alain, 2023. "Measuring security development in information technologies: A scientometric framework using arXiv e-prints," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    4. Xiaorui Jiang & Jingqiang Chen, 2023. "Contextualised segment-wise citation function classification," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(9), pages 5117-5158, September.
    5. Indra Budi & Yaniasih Yaniasih, 2023. "Understanding the meanings of citations using sentiment, role, and citation function classifications," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(1), pages 735-759, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dangzhi Zhao & Andreas Strotmann, 2020. "Telescopic and panoramic views of library and information science research 2011–2018: a comparison of four weighting schemes for author co-citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 255-270, July.
    2. Yaniasih Yaniasih & Indra Budi, 2021. "Systematic Design and Evaluation of a Citation Function Classification Scheme in Indonesian Journals," Publications, MDPI, vol. 9(3), pages 1-14, June.
    3. Marc Bertin & Iana Atanassova, 2022. "Preprint citation practice in PLOS," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 6895-6912, December.
    4. Zhang, Chengzhi & Liu, Lifan & Wang, Yuzhuo, 2021. "Characterizing references from different disciplines: A perspective of citation content analysis," Journal of Informetrics, Elsevier, vol. 15(2).
    5. Liyue Chen & Jielan Ding & Vincent Larivière, 2022. "Measuring the citation context of national self‐references," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(5), pages 671-686, May.
    6. Anthony G. Stacey, 2021. "Ages of cited references and growth of scientific knowledge: an explication of the gamma distribution in business and management disciplines," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 619-640, January.
    7. Hamid R. Jamali & Majid Nabavi & Saeid Asadi, 2018. "How video articles are cited, the case of JoVE: Journal of Visualized Experiments," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(3), pages 1821-1839, December.
    8. Shengzhi Huang & Jiajia Qian & Yong Huang & Wei Lu & Yi Bu & Jinqing Yang & Qikai Cheng, 2022. "Disclosing the relationship between citation structure and future impact of a publication," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(7), pages 1025-1042, July.
    9. CholMyong Pak & Guang Yu & Weibin Wang, 2018. "A study on the citation situation within the citing paper: citation distribution of references according to mention frequency," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 905-918, March.
    10. Waltman, Ludo, 2016. "A review of the literature on citation impact indicators," Journal of Informetrics, Elsevier, vol. 10(2), pages 365-391.
    11. Weibin Wang & Zheng Wang & Tian Yu & CholMyong Pak & Guang Yu, 2020. "Research on citation mention times and contributions using a neural network," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2383-2400, December.
    12. Akbaritabar, Aliakbar & Stephen, Dimity & Squazzoni, Flaminio, 2022. "A study of referencing changes in preprint-publication pairs across multiple fields," Journal of Informetrics, Elsevier, vol. 16(2).
    13. Marc Bertin & Iana Atanassova & Cassidy R. Sugimoto & Vincent Lariviere, 2016. "The linguistic patterns and rhetorical structure of citation context: an approach using n-grams," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 1417-1434, December.
    14. Drahomira Herrmannova & Robert M. Patton & Petr Knoth & Christopher G. Stahl, 2018. "Do citations and readership identify seminal publications?," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(1), pages 239-262, April.
    15. Boyack, Kevin W. & van Eck, Nees Jan & Colavizza, Giovanni & Waltman, Ludo, 2018. "Characterizing in-text citations in scientific articles: A large-scale analysis," Journal of Informetrics, Elsevier, vol. 12(1), pages 59-73.
    16. Wang, Shiyun & Mao, Jin & Lu, Kun & Cao, Yujie & Li, Gang, 2021. "Understanding interdisciplinary knowledge integration through citance analysis: A case study on eHealth," Journal of Informetrics, Elsevier, vol. 15(4).
    17. Sehrish Iqbal & Saeed-Ul Hassan & Naif Radi Aljohani & Salem Alelyani & Raheel Nawaz & Lutz Bornmann, 2021. "A decade of in-text citation analysis based on natural language processing and machine learning techniques: an overview of empirical studies," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6551-6599, August.
    18. Stacey, Anthony G, 2020. "Robust parameterisation of ages of references in published research," Journal of Informetrics, Elsevier, vol. 14(3).
    19. Dangzhi Zhao & Andreas Strotmann, 2020. "Deep and narrow impact: introducing location filtered citation counting," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 503-517, January.
    20. Lu, Chao & Bu, Yi & Dong, Xianlei & Wang, Jie & Ding, Ying & Larivière, Vincent & Sugimoto, Cassidy R. & Paul, Logan & Zhang, Chengzhi, 2019. "Analyzing linguistic complexity and scientific impact," Journal of Informetrics, Elsevier, vol. 13(3), pages 817-829.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:127:y:2022:i:11:d:10.1007_s11192-021-04242-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.