IDEAS home Printed from https://ideas.repec.org/a/eee/ijocip/v6y2013i2p87-95.html
   My bibliography  Save this article

Analysis of the effects of distributed denial-of-service attacks on MPLS networks

Author

Listed:
  • Genge, Béla
  • Siaterlis, Christos

Abstract

Modern critical infrastructures such as the power grid are frequently targeted by distributed denial-of-service (DDoS) attacks. Unlike traditional information and communications systems, where the effects of DDoS attacks are mostly limited to the cyber realm, disruptive attacks on critical infrastructure assets can result in the loss of vital services such as transportation and health care. This paper evaluates the effect of disruptive DDoS attacks on multiprotocol label switching (MPLS) networks that provide communications services to many large-scale critical infrastructure assets. The experimental results provide insights into architectural configurations that can increase network resilience without the need to incorporate additional hardware and software.

Suggested Citation

  • Genge, Béla & Siaterlis, Christos, 2013. "Analysis of the effects of distributed denial-of-service attacks on MPLS networks," International Journal of Critical Infrastructure Protection, Elsevier, vol. 6(2), pages 87-95.
  • Handle: RePEc:eee:ijocip:v:6:y:2013:i:2:p:87-95
    DOI: 10.1016/j.ijcip.2013.04.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1874548213000206
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijcip.2013.04.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bobbio, A. & Bonanni, G. & Ciancamerla, E. & Clemente, R. & Iacomini, A. & Minichino, M. & Scarlatti, A. & Terruggia, R. & Zendri, E., 2010. "Unavailability of critical SCADA communication links interconnecting a power grid and a Telco network," Reliability Engineering and System Safety, Elsevier, vol. 95(12), pages 1345-1357.
    2. Rahimi, Sanaz & Zargham, Mehdi, 2012. "Analysis of the security of VPN configurations in industrial control environments," International Journal of Critical Infrastructure Protection, Elsevier, vol. 5(1), pages 3-13.
    3. Deccio, Casey, 2012. "Maintenance, mishaps and mending in deployments of the domain name system security extensions (DNSSEC)," International Journal of Critical Infrastructure Protection, Elsevier, vol. 5(2), pages 98-103.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Genge, Béla & Graur, Flavius & Haller, Piroska, 2015. "Experimental assessment of network design approaches for protecting industrial control systems," International Journal of Critical Infrastructure Protection, Elsevier, vol. 11(C), pages 24-38.
    2. Genge, Béla & Kiss, István & Haller, Piroska, 2015. "A system dynamics approach for assessing the impact of cyber attacks on critical infrastructures," International Journal of Critical Infrastructure Protection, Elsevier, vol. 10(C), pages 3-17.
    3. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    2. Zio, Enrico, 2016. "Challenges in the vulnerability and risk analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 137-150.
    3. Ji, Xingpei & Wang, Bo & Liu, Dichen & Dong, Zhaoyang & Chen, Guo & Zhu, Zhenshan & Zhu, Xuedong & Wang, Xunting, 2016. "Will electrical cyber–physical interdependent networks undergo first-order transition under random attacks?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 235-245.
    4. Bloomfield, Robin E. & Popov, Peter & Salako, Kizito & Stankovic, Vladimir & Wright, David, 2017. "Preliminary interdependency analysis: An approach to support critical-infrastructure risk-assessment," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 198-217.
    5. Følstad, Eirik L. & Helvik, Bjarne E., 2016. "The cost for meeting SLA dependability requirements; implications for customers and providers," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 136-146.
    6. Ji, Xingpei & Wang, Bo & Liu, Dichen & Chen, Guo & Tang, Fei & Wei, Daqian & Tu, Lian, 2016. "Improving interdependent networks robustness by adding connectivity links," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 9-19.
    7. Nan, Cen & Eusgeld, Irene & Kröger, Wolfgang, 2013. "Analyzing vulnerabilities between SCADA system and SUC due to interdependencies," Reliability Engineering and System Safety, Elsevier, vol. 113(C), pages 76-93.
    8. Hamid Mirshekali & Athila Q. Santos & Hamid Reza Shaker, 2023. "A Survey of Time-Series Prediction for Digitally Enabled Maintenance of Electrical Grids," Energies, MDPI, vol. 16(17), pages 1-29, August.
    9. Li, Xin & Wu, Haotian & Scoglio, Caterina & Gruenbacher, Don, 2015. "Robust allocation of weighted dependency links in cyber–physical networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 316-327.
    10. Zhang, Jianhua & Song, Bo & Zhang, Zhaojun & Liu, Haikuan, 2014. "An approach for modeling vulnerability of the network of networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 412(C), pages 127-136.
    11. Ouyang, Min, 2014. "Review on modeling and simulation of interdependent critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 43-60.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijocip:v:6:y:2013:i:2:p:87-95. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-critical-infrastructure-protection .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.