IDEAS home Printed from https://ideas.repec.org/a/eee/ijocip/v46y2024ics1874548224000246.html
   My bibliography  Save this article

Advancing coordination in critical maritime infrastructure protection: Lessons from maritime piracy and cybersecurity

Author

Listed:
  • Liebetrau, Tobias
  • Bueger, Christian

Abstract

Critical maritime infrastructure protection has become a priority in ocean governance, particularly in Europe. Increased geopolitical tensions, regional conflicts, and the Nord Stream pipeline attacks in the Baltic Sea of September 2022 have been the main catalysts for this development. Calls for enhancing critical maritime infrastructure protection have multiplied, yet, what this implies in practice is less clear. This is partially a question of engineering and risk analysis. It also concerns how the multitude of actors involved can act concertedly. Dialogue, information sharing, and coordination are required, but there is a lack of discussion about which institutional set ups would lend themselves. In this article, we argue that the maritime counter-piracy operations off Somalia, as well as maritime cybersecurity governance hold valuable lessons to provide new answers for the institutional question in the critical maritime infrastructure protection agenda. We start by clarifying what is at stake in the CMIP agenda and why it is a major contemporary governance challenge. We then examine and assess the instruments found in maritime counter-piracy and maritime cybersecurity governance, including why and how they provide effective solutions for enhancing critical maritime infrastructure protection. Finally, we assess the ongoing institution building for CMIP in Europe. While we focus on the European experience, our discussion on designing institutions carries forward lessons for CMIP in other regions, too.

Suggested Citation

  • Liebetrau, Tobias & Bueger, Christian, 2024. "Advancing coordination in critical maritime infrastructure protection: Lessons from maritime piracy and cybersecurity," International Journal of Critical Infrastructure Protection, Elsevier, vol. 46(C).
  • Handle: RePEc:eee:ijocip:v:46:y:2024:i:c:s1874548224000246
    DOI: 10.1016/j.ijcip.2024.100683
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1874548224000246
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijcip.2024.100683?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Franken, Jonas & Reinhold, Thomas & Reichert, Lilian & Reuter, Christian, 2022. "The digital divide in state vulnerability to submarine communications cable failure," International Journal of Critical Infrastructure Protection, Elsevier, vol. 38(C).
    2. Laugé, Ana & Hernantes, Josune & Sarriegi, Jose M., 2015. "Critical infrastructure dependencies: A holistic, dynamic and quantitative approach," International Journal of Critical Infrastructure Protection, Elsevier, vol. 8(C), pages 16-23.
    3. Douglas Guilfoyle, 2013. "Prosecuting Pirates: The Contact Group on Piracy off the Coast of Somalia, Governance and International Law," Global Policy, London School of Economics and Political Science, vol. 4(1), pages 73-79, February.
    4. Dunn-Cavelty, Myriam & Suter, Manuel, 2009. "Public–Private Partnerships are no silver bullet: An expanded governance model for Critical Infrastructure Protection," International Journal of Critical Infrastructure Protection, Elsevier, vol. 2(4), pages 179-187.
    5. Yang, Zhuyu & Barroca, Bruno & Laffréchine, Katia & Weppe, Alexandre & Bony-Dandrieux, Aurélia & Daclin, Nicolas, 2023. "A multi-criteria framework for critical infrastructure systems resilience," International Journal of Critical Infrastructure Protection, Elsevier, vol. 42(C).
    6. Zhuyu Yang & Bruno Barroca & Katia Laffréchine & Alexandre Weppe & Aurélia Bony-Dandrieux & Nicolas Daclin, 2023. "A multi-criteria framework for critical infrastructure systems resilience," Post-Print hal-04135558, HAL.
    7. Bolbot, Victor & Kulkarni, Ketki & Brunou, Päivi & Banda, Osiris Valdez & Musharraf, Mashrura, 2022. "Developments and research directions in maritime cybersecurity: A systematic literature review and bibliometric analysis," International Journal of Critical Infrastructure Protection, Elsevier, vol. 39(C).
    8. Gülcan, Tolga Ahmet & Erginer, Kadir Emrah, 2023. "National and international maritime situational awareness model examples and the effects of North Stream Pipelines sabotage," International Journal of Critical Infrastructure Protection, Elsevier, vol. 42(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed Mohy Ibrahim & Mohamed Abdelfattah & Mohamed Mohasseb & Said Abdelkader, 2024. "Security Risk Assessment of Teleoperated Vessels and Associated Centers: Parameter Identification," Journal of Transportation Security, Springer, vol. 17(1), pages 1-26, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Witold Torbacki, 2021. "A Hybrid MCDM Model Combining DANP and PROMETHEE II Methods for the Assessment of Cybersecurity in Industry 4.0," Sustainability, MDPI, vol. 13(16), pages 1-35, August.
    2. Uflaz, Esma & Sezer, Sukru Ilke & Tunçel, Ahmet Lutfi & Aydin, Muhammet & Akyuz, Emre & Arslan, Ozcan, 2024. "Quantifying potential cyber-attack risks in maritime transportation under Dempster–Shafer theory FMECA and rule-based Bayesian network modelling," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    3. Giada Feletti & Mariachiara Piraina & Boris Petrenj & Paolo Trucco, 2022. "Collaborative capability building for critical infrastructure resilience: assessment and selection of good practices," Environment Systems and Decisions, Springer, vol. 42(2), pages 207-233, June.
    4. Givens, Austen D. & Busch, Nathan E., 2013. "Realizing the promise of public-private partnerships in U.S. critical infrastructure protection," International Journal of Critical Infrastructure Protection, Elsevier, vol. 6(1), pages 39-50.
    5. Lo, Huai-Wei & Liou, James J.H. & Huang, Chun-Nen & Chuang, Yen-Ching & Tzeng, Gwo-Hshiung, 2020. "A new soft computing approach for analyzing the influential relationships of critical infrastructures," International Journal of Critical Infrastructure Protection, Elsevier, vol. 28(C).
    6. Wehrle, Rebecca & Wiens, Marcus & Schultmann, Frank, 2024. "Evaluation of the potential of infrastructure funds: The case of inland waterways in Germany," Technological Forecasting and Social Change, Elsevier, vol. 208(C).
    7. Å arÅ«nienÄ—, Inga & MartiÅ¡auskas, Linas & KrikÅ¡tolaitis, RiÄ ardas & Augutis, Juozas & Setola, Roberto, 2024. "Risk assessment of critical infrastructures: A methodology based on criticality of infrastructure elements," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    8. David Rehak & Simona Slivkova & Heidi Janeckova & Dominika Stuberova & Martin Hromada, 2022. "Strengthening Resilience in the Energy Critical Infrastructure: Methodological Overview," Energies, MDPI, vol. 15(14), pages 1-14, July.
    9. Zenonas Turskis & Nikolaj Goranin & Assel Nurusheva & Seilkhan Boranbayev, 2019. "A Fuzzy WASPAS-Based Approach to Determine Critical Information Infrastructures of EU Sustainable Development," Sustainability, MDPI, vol. 11(2), pages 1-25, January.
    10. Cinta Lomba-Fernández & Josune Hernantes & Leire Labaka, 2019. "Guide for Climate-Resilient Cities: An Urban Critical Infrastructures Approach," Sustainability, MDPI, vol. 11(17), pages 1-19, August.
    11. Harašta, Jakub, 2018. "Legally critical: Defining critical infrastructure in an interconnected world," International Journal of Critical Infrastructure Protection, Elsevier, vol. 21(C), pages 47-56.
    12. Petar Radanliev & David Roure & Max Kleek & Uchenna Ani & Pete Burnap & Eirini Anthi & Jason R. C. Nurse & Omar Santos & Rafael Mantilla Montalvo & La’Treall Maddox, 2021. "Dynamic real-time risk analytics of uncontrollable states in complex internet of things systems: cyber risk at the edge," Environment Systems and Decisions, Springer, vol. 41(2), pages 236-247, June.
    13. Seppänen, Hannes & Luokkala, Pekka & Zhang, Zhe & Torkki, Paulus & Virrantaus, Kirsi, 2018. "Critical infrastructure vulnerability—A method for identifying the infrastructure service failure interdependencies," International Journal of Critical Infrastructure Protection, Elsevier, vol. 22(C), pages 25-38.
    14. Brittany VandeBerg & Harper Cook & Caden Kilpatrick, 2024. "Fear and Loathing on the High Seas: Affective Dimensions of Justice in Kenya’s Piracy Trials," Ocean and Society, Cogitatio Press, vol. 1.
    15. Bhandari, Pratik & Creighton, Douglas & Gong, Jinzhe & Boyle, Carol & Law, Kris M.Y., 2023. "Evolution of cyber-physical-human water systems: Challenges and gaps," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    16. Wang, Yang & Ye, Ting & Zio, Enrico & Wang, Tengfei & Wu, Bing, 2024. "A blockchain-based credibility evaluation scheme for navigational event dissemination in the internet of ships," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    17. Knodt, Michèle & Stöckl, Anna & Steinke, Florian & Pietsch, Martin & Hornung, Gerrit & Stroscher, Jan-Philipp, 2023. "Power blackout: Citizens’ contribution to strengthen urban resilience," Energy Policy, Elsevier, vol. 174(C).
    18. Stefan Greiving & Mark Fleischhauer & Christian D. León & Leonie Schödl & Gisela Wachinger & Iris Katherine Quintana Miralles & Benjamín Prado Larraín, 2021. "Participatory Assessment of Multi Risks in Urban Regions—The Case of Critical Infrastructures in Metropolitan Lima," Sustainability, MDPI, vol. 13(5), pages 1-21, March.
    19. Klein, Peter & Klein, Fabian, 2019. "Dynamics of interdependent critical infrastructures – A mathematical model with unexpected results," International Journal of Critical Infrastructure Protection, Elsevier, vol. 24(C), pages 69-77.
    20. Philip M. Kruse & Hanna C. Schmitt & Stefan Greiving, 2021. "Systemic criticality—a new assessment concept improving the evidence basis for CI protection," Climatic Change, Springer, vol. 165(1), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijocip:v:46:y:2024:i:c:s1874548224000246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-critical-infrastructure-protection .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.