IDEAS home Printed from https://ideas.repec.org/a/eee/ijocip/v21y2018icp47-56.html
   My bibliography  Save this article

Legally critical: Defining critical infrastructure in an interconnected world

Author

Listed:
  • Harašta, Jakub

Abstract

Cyber security becomes omnipresent within the society, stakeholders are taking actions necessary to reassure general public and to enhance the level of protection. One of the ways seems to be to incorporate cyber into existing frameworks for critical infrastructure protection. This text demonstrates how the introduction of cyber strains existing frameworks and demonstrates certain misconceptions on the case study of the legal change in the Czech Republic. Introducing cyber leads to selective choice of specific type of interdependency, while it ignores other significant types. The paper observes large discrepancy between the macro-level definitions and micro-level procedures and concludes that changes in the existing legal framework present a securitization exercise without significant added value.

Suggested Citation

  • Harašta, Jakub, 2018. "Legally critical: Defining critical infrastructure in an interconnected world," International Journal of Critical Infrastructure Protection, Elsevier, vol. 21(C), pages 47-56.
  • Handle: RePEc:eee:ijocip:v:21:y:2018:i:c:p:47-56
    DOI: 10.1016/j.ijcip.2018.05.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1874548216300841
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijcip.2018.05.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Pengcheng & Peeta, Srinivas, 2011. "A generalized modeling framework to analyze interdependencies among infrastructure systems," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 553-579, March.
    2. Laugé, Ana & Hernantes, Josune & Sarriegi, Jose M., 2015. "Critical infrastructure dependencies: A holistic, dynamic and quantitative approach," International Journal of Critical Infrastructure Protection, Elsevier, vol. 8(C), pages 16-23.
    3. Ouyang, Min, 2014. "Review on modeling and simulation of interdependent critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 43-60.
    4. J. Peter Burgess, 2007. "Social values and material threat: the European Programme for Critical Infrastructure Protection," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 3(3/4), pages 471-487.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dubaniowski, Mateusz Iwo & Heinimann, Hans Rudolf, 2021. "Framework for modeling interdependencies between households, businesses, and infrastructure system, and their response to disruptions—application," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    2. Lo, Huai-Wei & Liou, James J.H. & Huang, Chun-Nen & Chuang, Yen-Ching & Tzeng, Gwo-Hshiung, 2020. "A new soft computing approach for analyzing the influential relationships of critical infrastructures," International Journal of Critical Infrastructure Protection, Elsevier, vol. 28(C).
    3. Lu, Qing-Chang & Xu, Peng-Cheng & Zhao, Xiangmo & Zhang, Lei & Li, Xiaoling & Cui, Xin, 2022. "Measuring network interdependency between dependent networks: A supply-demand-based approach," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    4. Xu, Peng-Cheng & Lu, Qing-Chang & Xie, Chi & Cheong, Taesu, 2024. "Modeling the resilience of interdependent networks: The role of function dependency in metro and bus systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    5. Zio, Enrico, 2016. "Challenges in the vulnerability and risk analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 137-150.
    6. Alkhaleel, Basem A., 2024. "Machine learning applications in the resilience of interdependent critical infrastructure systems—A systematic literature review," International Journal of Critical Infrastructure Protection, Elsevier, vol. 44(C).
    7. Li, Qing & Li, Mingchu & Gong, Zhongqiang & Tian, Yuan & Zhang, Runfa, 2022. "Locating and protecting interdependent facilities to hedge against multiple non-cooperative limited choice attackers," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    8. de Castro-Pardo, Mónica & Pérez-Rodríguez, Fernando & Martín-Martín, José María & Azevedo, João C., 2019. "Modelling stakeholders’ preferences to pinpoint conflicts in the planning of transboundary protected areas," Land Use Policy, Elsevier, vol. 89(C).
    9. Wang, Shuliang & Lv, Wenzhuo & Zhang, Jianhua & Luan, Shengyang & Chen, Chen & Gu, Xifeng, 2021. "Method of power network critical nodes identification and robustness enhancement based on a cooperative framework," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    10. Zenonas Turskis & Nikolaj Goranin & Assel Nurusheva & Seilkhan Boranbayev, 2019. "A Fuzzy WASPAS-Based Approach to Determine Critical Information Infrastructures of EU Sustainable Development," Sustainability, MDPI, vol. 11(2), pages 1-25, January.
    11. Rita Der Sarkissian & Chadi Abdallah & Jean-Marc Zaninetti & Sara Najem, 2020. "Modelling intra-dependencies to assess road network resilience to natural hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 121-137, August.
    12. Ouyang, Min & Pan, ZheZhe & Hong, Liu & He, Yue, 2015. "Vulnerability analysis of complementary transportation systems with applications to railway and airline systems in China," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 248-257.
    13. Petar Radanliev & David Roure & Max Kleek & Uchenna Ani & Pete Burnap & Eirini Anthi & Jason R. C. Nurse & Omar Santos & Rafael Mantilla Montalvo & La’Treall Maddox, 2021. "Dynamic real-time risk analytics of uncontrollable states in complex internet of things systems: cyber risk at the edge," Environment Systems and Decisions, Springer, vol. 41(2), pages 236-247, June.
    14. Sharma, Neetesh & Gardoni, Paolo, 2022. "Mathematical modeling of interdependent infrastructure: An object-oriented approach for generalized network-system analysis," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    15. Seppänen, Hannes & Luokkala, Pekka & Zhang, Zhe & Torkki, Paulus & Virrantaus, Kirsi, 2018. "Critical infrastructure vulnerability—A method for identifying the infrastructure service failure interdependencies," International Journal of Critical Infrastructure Protection, Elsevier, vol. 22(C), pages 25-38.
    16. Linn Svegrup & Jonas Johansson & Henrik Hassel, 2019. "Integration of Critical Infrastructure and Societal Consequence Models: Impact on Swedish Power System Mitigation Decisions," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1970-1996, September.
    17. Zhang, Pengcheng & Peeta, Srinivas, 2014. "Dynamic and disequilibrium analysis of interdependent infrastructure systems," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 357-381.
    18. Bhandari, Pratik & Creighton, Douglas & Gong, Jinzhe & Boyle, Carol & Law, Kris M.Y., 2023. "Evolution of cyber-physical-human water systems: Challenges and gaps," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    19. Wang, Jing & Zuo, Wangda & Rhode-Barbarigos, Landolf & Lu, Xing & Wang, Jianhui & Lin, Yanling, 2019. "Literature review on modeling and simulation of energy infrastructures from a resilience perspective," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 360-373.
    20. Juyeong Choi & Abhijeet Deshmukh & Nader Naderpajouh & Makarand Hastak, 2017. "Dynamic relationship between functional stress and strain capacity of post-disaster infrastructure," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 817-841, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijocip:v:21:y:2018:i:c:p:47-56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-critical-infrastructure-protection .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.