IDEAS home Printed from https://ideas.repec.org/a/eee/ijocip/v45y2024ics1874548224000209.html
   My bibliography  Save this article

A comparison of onshore oil and gas transmission pipeline incident statistics in Canada and the United States

Author

Listed:
  • Shen, Y.
  • Zhou, W.

Abstract

This study analyzes the mileage and incident data between 1995 and 2016 corresponding to the onshore oil and natural gas transmission pipelines regulated by the Canada Energy Regulator (CER) and Pipeline and Hazardous Materials Safety Administration (PHMSA) of the United States. The analysis indicates that the material/weld/equipment failure is the leading failure cause for both CER and PHMSA pipeline incidents. The annual average incident rates of the CER and PHMSA pipelines are in the order of 10−3 per km except for the PHMSA gas pipelines, the annual incident rate of which is in the order of 10−4 per km. The annual average rupture rates of the CER and PHMSA pipelines vary from 3.5 × 10−5 to 4.5 × 10−5 per km. The F-N curves for the PHMSA pipelines are developed based on the mileage and incident data to quantify the societal risks posed by the pipeline in general.

Suggested Citation

  • Shen, Y. & Zhou, W., 2024. "A comparison of onshore oil and gas transmission pipeline incident statistics in Canada and the United States," International Journal of Critical Infrastructure Protection, Elsevier, vol. 45(C).
  • Handle: RePEc:eee:ijocip:v:45:y:2024:i:c:s1874548224000209
    DOI: 10.1016/j.ijcip.2024.100679
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1874548224000209
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijcip.2024.100679?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Siler-Evans, Kyle & Hanson, Alex & Sunday, Cecily & Leonard, Nathan & Tumminello, Michele, 2014. "Analysis of pipeline accidents in the United States from 1968 to 2009," International Journal of Critical Infrastructure Protection, Elsevier, vol. 7(4), pages 257-269.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Talha Ahmed & Yasir Mahmood & Nita Yodo & Ying Huang, 2024. "Weather-Related Combined Effect on Failure Propagation and Maintenance Procedures towards Sustainable Gas Pipeline Infrastructure," Sustainability, MDPI, vol. 16(13), pages 1-30, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shengli, Liu & Yongtu, Liang, 2019. "Exploring the temporal structure of time series data for hazardous liquid pipeline incidents based on complex network theory," International Journal of Critical Infrastructure Protection, Elsevier, vol. 26(C).
    2. Liu, Shengli & Liang, Yongtu, 2021. "Statistics of catastrophic hazardous liquid pipeline accidents," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    3. Richard A. Schultz & Douglas W. Hubbard & David J. Evans & Sam L. Savage, 2020. "Characterization of Historical Methane Occurrence Frequencies from U.S. Underground Natural Gas Storage Facilities with Implications for Risk Management, Operations, and Regulatory Policy," Risk Analysis, John Wiley & Sons, vol. 40(3), pages 588-607, March.
    4. Jihong Ye & Yiyang Fang & Xinxiang Yang, 2022. "Vulnerability Analysis of Harbor Oil Pipeline Affected by Typhoon," Energies, MDPI, vol. 15(18), pages 1-17, September.
    5. Brodsky, Casey N. & Bucala, Matthew D. & Rowland, Sebastian T. & Michanowicz, Drew R., 2024. "The burden of natural gas leaks on public sector emergency response in the United States," Energy Policy, Elsevier, vol. 192(C).
    6. Berke Ogulcan Parlak & Huseyin Ayhan Yavasoglu, 2023. "A Comprehensive Analysis of In-Line Inspection Tools and Technologies for Steel Oil and Gas Pipelines," Sustainability, MDPI, vol. 15(3), pages 1-25, February.
    7. Zhiqiang Xie & Fengshan Jiang & Jiarui Xu & Zhengang Zhai & Jianglong He & Daoyang Zheng & Junyu Lian & Zhiqun Hou & Lei Zhao & Yanxia Wang & Yuyun Feng, 2023. "A Narrative of Urban Underground Pipeline System Disasters in China in 2021: Spatial and Temporal Distribution, Causal Analysis, and Response Strategies," Sustainability, MDPI, vol. 15(13), pages 1-23, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijocip:v:45:y:2024:i:c:s1874548224000209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-critical-infrastructure-protection .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.