IDEAS home Printed from https://ideas.repec.org/a/eee/ijocip/v38y2022ics1874548222000397.html
   My bibliography  Save this article

A 2D-graph model-based heuristic approach to visual backtracking security vulnerabilities in physical protection systems

Author

Listed:
  • Yang, Jun
  • Huang, Leixiong
  • Ma, Haoming
  • Xu, Zhihui
  • Yang, Ming
  • Guo, Shaoqiang

Abstract

The paper presents a heuristic backward path tracing algorithm in combination with optimization EASI model for effective estimation of time delay remaining after detection TTR. The heuristic backward search algorithm is implemented based on a graph-based model representation of a hypothetical facility for visual path tracing and planning. A comparative analysis between the implementation of non-heuristic and heuristic search for the most vulnerable adversary paths identification in terms of the shortest distance (d), probability of detection (PD), and probability of interruption (PI) on different intrusion detection fields is carried out and in detail discussed. The comparison results show that the global optimal solutions can be obtained using the heuristic backward path tracing algorithm with high search efficiency and accuracy. The knotty problem encountered in unknown path generation under uncertainties for calculating TTR and PI is effectively solved for admissible and consistent heuristic function design.

Suggested Citation

  • Yang, Jun & Huang, Leixiong & Ma, Haoming & Xu, Zhihui & Yang, Ming & Guo, Shaoqiang, 2022. "A 2D-graph model-based heuristic approach to visual backtracking security vulnerabilities in physical protection systems," International Journal of Critical Infrastructure Protection, Elsevier, vol. 38(C).
  • Handle: RePEc:eee:ijocip:v:38:y:2022:i:c:s1874548222000397
    DOI: 10.1016/j.ijcip.2022.100554
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1874548222000397
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijcip.2022.100554?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Bowen & Yang, Ming & Zhang, Yuxin & Benjamin, Emi-Reynolds & Tan, Ke & Wu, Wenfei & Yoshikawa, Hidekazu, 2018. "Evaluation of vulnerable path: Using heuristic path-finding algorithm in physical protection system of nuclear power plant," International Journal of Critical Infrastructure Protection, Elsevier, vol. 23(C), pages 90-99.
    2. Rehak, David & Senovsky, Pavel & Hromada, Martin & Lovecek, Tomas, 2019. "Complex approach to assessing resilience of critical infrastructure elements," International Journal of Critical Infrastructure Protection, Elsevier, vol. 25(C), pages 125-138.
    3. Kampova, Katarina & Lovecek, Tomas & Rehak, David, 2020. "Quantitative approach to physical protection systems assessment of critical infrastructure elements: Use case in the Slovak Republic," International Journal of Critical Infrastructure Protection, Elsevier, vol. 30(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kampova, Katarina & Lovecek, Tomas & Rehak, David, 2020. "Quantitative approach to physical protection systems assessment of critical infrastructure elements: Use case in the Slovak Republic," International Journal of Critical Infrastructure Protection, Elsevier, vol. 30(C).
    2. David Rehak & Simona Slivkova & Heidi Janeckova & Dominika Stuberova & Martin Hromada, 2022. "Strengthening Resilience in the Energy Critical Infrastructure: Methodological Overview," Energies, MDPI, vol. 15(14), pages 1-14, July.
    3. Susu Ni & Shuliang Zou & Jiahua Chen, 2022. "Evolutionary Game Model of Internal Threats to Nuclear Security in Spent Fuel Reprocessing Plants Based on RDEU Theory," Sustainability, MDPI, vol. 14(4), pages 1-16, February.
    4. Tibor Sipos & Zsombor Szabó & Mohammed Obaid & Árpád Török, 2023. "Disaster Risk Assessment Scheme—A Road System Survey for Budapest," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
    5. Agnieszka Blokus & Przemysław Dziula, 2021. "Relations of Imperfect Repairs to Critical Infrastructure Maintenance Costs," Sustainability, MDPI, vol. 13(9), pages 1-19, April.
    6. Mottahedi, Adel & Sereshki, Farhang & Ataei, Mohammad & Qarahasanlou, Ali Nouri & Barabadi, Abbas, 2021. "Resilience estimation of critical infrastructure systems: Application of expert judgment," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    7. Michal Titko & Jozef Ristvej, 2020. "Assessing Importance of Disaster Preparedness Factors for Sustainable Disaster Risk Management: The Case of the Slovak Republic," Sustainability, MDPI, vol. 12(21), pages 1-20, November.
    8. Martin Hromada & David Rehak & Ludek Lukas, 2021. "Resilience Assessment in Electricity Critical Infrastructure from the Point of View of Converged Security," Energies, MDPI, vol. 14(6), pages 1-20, March.
    9. Bhandari, Pratik & Creighton, Douglas & Gong, Jinzhe & Boyle, Carol & Law, Kris M.Y., 2023. "Evolution of cyber-physical-human water systems: Challenges and gaps," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    10. Adel Mottahedi & Farhang Sereshki & Mohammad Ataei & Ali Nouri Qarahasanlou & Abbas Barabadi, 2021. "The Resilience of Critical Infrastructure Systems: A Systematic Literature Review," Energies, MDPI, vol. 14(6), pages 1-32, March.
    11. Katerina Vichova & Martin Hromada & Martin Dzermansky & Lukas Snopek & Robert Pekaj, 2022. "Solving Power Outages in Healthcare Facilities: Algorithmisation and Assessment of Preparedness," Energies, MDPI, vol. 16(1), pages 1-14, December.
    12. Maryam Garshasbi & Golam Kabir, 2022. "Earthquake Resilience Framework for a Stormwater Pipe Infrastructure System Integrating the Best Worst Method and Dempster–Shafer Theory," Sustainability, MDPI, vol. 14(5), pages 1-29, February.
    13. Ahmad Jafari Ghezelhesar & Ali Bozorgi-Amiri, 2022. "A novel approach to selection of resilient measures portfolio under disruption and uncertainty: a case study of e-payment service providers," Operational Research, Springer, vol. 22(5), pages 5477-5527, November.
    14. Meng Wei & Jiangang Xu & Yiwen Wang, 2022. "Resilience Assessment of Traffic Networks in Coastal Cities under Climate Change: A Case Study of One City with Unique Land Use Characteristics," Land, MDPI, vol. 11(10), pages 1-21, October.
    15. Michaela Kollarova & Tomas Granak & Stanislava Strelcova & Jozef Ristvej, 2023. "Conceptual Model of Key Aspects of Security and Privacy Protection in a Smart City in Slovakia," Sustainability, MDPI, vol. 15(8), pages 1-19, April.
    16. Corrado lo Storto, 2019. "An SNA-DEA Prioritization Framework to Identify Critical Nodes of Gas Networks: The Case of the US Interstate Gas Infrastructure," Energies, MDPI, vol. 12(23), pages 1-18, December.
    17. Zdenek Dvorak & Nikola Chovancikova & Jozef Bruk & Martin Hromada, 2021. "Methodological Framework for Resilience Assessment of Electricity Infrastructure in Conditions of Slovak Republic," IJERPH, MDPI, vol. 18(16), pages 1-29, August.
    18. Ahmadi, Somayeh & Saboohi, Yadollah & Vakili, Ali, 2021. "Frameworks, quantitative indicators, characters, and modeling approaches to analysis of energy system resilience: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    19. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    20. Hadi Alizadeh & Ayyoob Sharifi, 2020. "Assessing Resilience of Urban Critical Infrastructure Networks: A Case Study of Ahvaz, Iran," Sustainability, MDPI, vol. 12(9), pages 1-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijocip:v:38:y:2022:i:c:s1874548222000397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-critical-infrastructure-protection .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.