IDEAS home Printed from https://ideas.repec.org/a/eee/ijocip/v16y2017icp26-35.html
   My bibliography  Save this article

A methodology for determining the image base of ARM-based industrial control system firmware

Author

Listed:
  • Zhu, Ruijin
  • Zhang, Baofeng
  • Mao, Junjie
  • Zhang, Quanxin
  • Tan, Yu-an

Abstract

A common way to evaluate the security of an industrial control system is to reverse engineer its firmware; this is typically performed when the source code of the device is not available and the firmware is not trusted. However, many industrial control systems are based on the ARM architecture for which the firmware format is always unknown. Therefore, it is difficult to obtain the image base of firmware directly, which significantly complicates reverse engineering efforts. This paper describes a methodology for automatically determining the image base of firmware of ARM-based industrial control systems. Two algorithms, FIND-String and FIND-LDR, are presented that obtain the offsets of strings in firmware and the string addresses loaded by LDR instructions, respectively. Additionally, the DBMSSL algorithm is presented that uses the outputs of the FIND-String and FIND-LDR algorithms to determine the image base of firmware. Experiments are performed with 10 samples of industrial control system firmware collected from the Internet. The experimental results demonstrate that the proposed methodology is effective at determining the image bases of the majority of the firmware samples.

Suggested Citation

  • Zhu, Ruijin & Zhang, Baofeng & Mao, Junjie & Zhang, Quanxin & Tan, Yu-an, 2017. "A methodology for determining the image base of ARM-based industrial control system firmware," International Journal of Critical Infrastructure Protection, Elsevier, vol. 16(C), pages 26-35.
  • Handle: RePEc:eee:ijocip:v:16:y:2017:i:c:p:26-35
    DOI: 10.1016/j.ijcip.2016.12.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1874548216300014
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijcip.2016.12.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Basnight, Zachry & Butts, Jonathan & Lopez, Juan & Dube, Thomas, 2013. "Firmware modification attacks on programmable logic controllers," International Journal of Critical Infrastructure Protection, Elsevier, vol. 6(2), pages 76-84.
    2. Schuett, Carl & Butts, Jonathan & Dunlap, Stephen, 2014. "An evaluation of modification attacks on programmable logic controllers," International Journal of Critical Infrastructure Protection, Elsevier, vol. 7(1), pages 61-68.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu-an Tan & Xinting Xu & Chen Liang & Xiaosong Zhang & Quanxin Zhang & Yuanzhang Li, 2018. "An end-to-end covert channel via packet dropout for mobile networks," International Journal of Distributed Sensor Networks, , vol. 14(5), pages 15501477187, May.
    2. Yadav, Geeta & Paul, Kolin, 2021. "Architecture and security of SCADA systems: A review," International Journal of Critical Infrastructure Protection, Elsevier, vol. 34(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Monzer, Mohamad-Houssein & Beydoun, Kamal & Ghaith, Alaa & Flaus, Jean-Marie, 2022. "Model-based IDS design for ICSs," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    2. SICARD, Franck & ZAMAI, Éric & FLAUS, Jean-Marie, 2019. "An approach based on behavioral models and critical states distance notion for improving cybersecurity of industrial control systems," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 584-603.
    3. Yadav, Geeta & Paul, Kolin, 2021. "Architecture and security of SCADA systems: A review," International Journal of Critical Infrastructure Protection, Elsevier, vol. 34(C).
    4. Safari, Mohammad & Parvinnia, Elham & Haddad, Alireza Keshavarz, 2021. "Industrial intrusion detection based on the behavior of rotating machine," International Journal of Critical Infrastructure Protection, Elsevier, vol. 34(C).
    5. Gopal Vishwakarma & Wonjun Lee, 2018. "Exploiting JTAG and Its Mitigation in IOT: A Survey," Future Internet, MDPI, vol. 10(12), pages 1-18, December.
    6. adepu, Sridhar & Mathur, Aditya, 2021. "SafeCI: Avoiding process anomalies in critical infrastructure," International Journal of Critical Infrastructure Protection, Elsevier, vol. 34(C).
    7. Schuett, Carl & Butts, Jonathan & Dunlap, Stephen, 2014. "An evaluation of modification attacks on programmable logic controllers," International Journal of Critical Infrastructure Protection, Elsevier, vol. 7(1), pages 61-68.
    8. Krotofil, Marina & Cárdenas, Alvaro & Larsen, Jason & Gollmann, Dieter, 2014. "Vulnerabilities of cyber-physical systems to stale data—Determining the optimal time to launch attacks," International Journal of Critical Infrastructure Protection, Elsevier, vol. 7(4), pages 213-232.
    9. Barry C. Ezell & R. Michael Robinson & Peter Foytik & Craig Jordan & David Flanagan, 2013. "Cyber risk to transportation, industrial control systems, and traffic signal controllers," Environment Systems and Decisions, Springer, vol. 33(4), pages 508-516, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijocip:v:16:y:2017:i:c:p:26-35. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-critical-infrastructure-protection .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.