IDEAS home Printed from https://ideas.repec.org/a/eee/glofin/v57y2023ics104402832300039x.html
   My bibliography  Save this article

Asymmetric downside risk across different sectors of the US equity market

Author

Listed:
  • Valadkhani, Abbas

Abstract

This study integrates a threshold-mean equation with an asymmetric power autoregressive conditionally heteroscedastic (APARCH) model to examine the behavior of sector-specific exchange-traded funds (ETFs) during extreme market downturns between December 23, 1998, and November 2, 2022. Thus, predetermined and optimal boundary points are applied to the extreme left tail of the return distribution to assess the extent of downside risk differentials inside and outside the extreme drawdown zone without splitting the sample period. According to the findings, the betas of the ETFs XLI, XLP, XLV, and XLY are comparable under both extreme and nonextreme market conditions. In contrast, XLF, XLE, and XLU have higher downside betas during extreme market conditions compared with their nonextreme betas, while XLB and XLK exhibit the opposite pattern. The results remain robust and consistent regardless of how the boundary points are established. The estimated models in this study were successfully subjected to a series of diagnostic tests, suggesting that the commonly held view about asymmetric responses in different market conditions does not apply to all market segments.

Suggested Citation

  • Valadkhani, Abbas, 2023. "Asymmetric downside risk across different sectors of the US equity market," Global Finance Journal, Elsevier, vol. 57(C).
  • Handle: RePEc:eee:glofin:v:57:y:2023:i:c:s104402832300039x
    DOI: 10.1016/j.gfj.2023.100844
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S104402832300039X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.gfj.2023.100844?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Estrada, Javier, 2002. "Systematic risk in emerging markets: the," Emerging Markets Review, Elsevier, vol. 3(4), pages 365-379, December.
    2. Fama, Eugene F & French, Kenneth R, 1992. "The Cross-Section of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 47(2), pages 427-465, June.
    3. Fatih Guvenen & Greg Kaplan & Jae Song, 2014. "How Risky Are Recessions for Top Earners?," American Economic Review, American Economic Association, vol. 104(5), pages 148-153, May.
    4. Michael McKenzie & Heather Mitchell & Robert Brooks & Robert Faff, 2001. "Power ARCH modelling of commodity futures data on the London Metal Exchange," The European Journal of Finance, Taylor & Francis Journals, vol. 7(1), pages 22-38.
    5. Samuel Xin Liang & K.C. John Wei, 2020. "Market Volatility Risk and Stock Returns around the World: Implication for Multinational Corporations," International Review of Finance, International Review of Finance Ltd., vol. 20(4), pages 923-959, December.
    6. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    7. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    8. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Ginger Wu, 2006. "Realized Beta: Persistence and Predictability," Advances in Econometrics, in: Econometric Analysis of Financial and Economic Time Series, pages 1-39, Emerald Group Publishing Limited.
    9. Fishburn, Peter C, 1977. "Mean-Risk Analysis with Risk Associated with Below-Target Returns," American Economic Review, American Economic Association, vol. 67(2), pages 116-126, March.
    10. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    11. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
    12. Cheah, Eng-Tuck & Mishra, Tapas & Parhi, Mamata & Zhang, Zhuang, 2018. "Long Memory Interdependency and Inefficiency in Bitcoin Markets," Economics Letters, Elsevier, vol. 167(C), pages 18-25.
    13. Martin Lettau & Ananth Madhavan, 2018. "Exchange-Traded Funds 101 for Economists," Journal of Economic Perspectives, American Economic Association, vol. 32(1), pages 135-154, Winter.
    14. Yang, Lu, 2023. "Oil price bubbles: The role of network centrality on idiosyncratic sovereign risk," Resources Policy, Elsevier, vol. 82(C).
    15. Karolyi, G Andrew & Stulz, Rene M, 1996. "Why Do Markets Move Together? An Investigation of U.S.-Japan Stock Return Comovements," Journal of Finance, American Finance Association, vol. 51(3), pages 951-986, July.
    16. Granger, Clive W. J. & Terasvirta, Timo, 1999. "A simple nonlinear time series model with misleading linear properties," Economics Letters, Elsevier, vol. 62(2), pages 161-165, February.
    17. Ang, Andrew & Chen, Joseph, 2007. "CAPM over the long run: 1926-2001," Journal of Empirical Finance, Elsevier, vol. 14(1), pages 1-40, January.
    18. Post, Thierry & van Vliet, Pim, 2006. "Downside risk and asset pricing," Journal of Banking & Finance, Elsevier, vol. 30(3), pages 823-849, March.
    19. repec:eme:mfppss:v:41:y:2015:i:9:p:940-957 is not listed on IDEAS
    20. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
    21. Yang, Lu, 2022. "Idiosyncratic information spillover and connectedness network between the electricity and carbon markets in Europe," Journal of Commodity Markets, Elsevier, vol. 25(C).
    22. Chen, Cathy Yi-Hsuan & Chiang, Thomas C. & Härdle, Wolfgang Karl, 2018. "Downside risk and stock returns in the G7 countries: An empirical analysis of their long-run and short-run dynamics," Journal of Banking & Finance, Elsevier, vol. 93(C), pages 21-32.
    23. Black, A. & Fraser, P. & Power, D., 1992. "UK unit trust performance 1980-1989: A passive time-varying approach," Journal of Banking & Finance, Elsevier, vol. 16(5), pages 1015-1033, September.
    24. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    25. Frazzini, Andrea & Pedersen, Lasse Heje, 2014. "Betting against beta," Journal of Financial Economics, Elsevier, vol. 111(1), pages 1-25.
    26. Adrian, Tobias & Franzoni, Francesco, 2009. "Learning about beta: Time-varying factor loadings, expected returns, and the conditional CAPM," Journal of Empirical Finance, Elsevier, vol. 16(4), pages 537-556, September.
    27. Assaf, Ata & Bhandari, Avishek & Charif, Husni & Demir, Ender, 2022. "Multivariate long memory structure in the cryptocurrency market: The impact of COVID-19," International Review of Financial Analysis, Elsevier, vol. 82(C).
    28. Durand, Robert B. & Lan, Yihui & Ng, Andrew, 2011. "Conditional beta: Evidence from Asian emerging markets," Global Finance Journal, Elsevier, vol. 22(2), pages 130-153.
    29. Forni, Mario & Hallin, Marc & Lippi, Marco & Zaffaroni, Paolo, 2017. "Dynamic factor models with infinite-dimensional factor space: Asymptotic analysis," Journal of Econometrics, Elsevier, vol. 199(1), pages 74-92.
    30. Lettau, Martin & Maggiori, Matteo & Weber, Michael, 2014. "Conditional risk premia in currency markets and other asset classes," Journal of Financial Economics, Elsevier, vol. 114(2), pages 197-225.
    31. Perron, Pierre & Vogelsang, Timothy J, 1992. "Nonstationarity and Level Shifts with an Application to Purchasing Power Parity," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(3), pages 301-320, July.
    32. Benjamin R. Auer & Frank Schuhmacher, 2015. "Liquid Betting against Beta in Dow Jones Industrial Average Stocks," Financial Analysts Journal, Taylor & Francis Journals, vol. 71(6), pages 30-43, November.
    33. Pettengill, Glenn N. & Sundaram, Sridhar & Mathur, Ike, 1995. "The Conditional Relation between Beta and Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 30(1), pages 101-116, March.
    34. Rachel Campbell & Kees Koedijk & Paul Kofman, 2002. "Increased Correlation in Bear Markets," Financial Analysts Journal, Taylor & Francis Journals, vol. 58(1), pages 87-94, January.
    35. John Lintner, 1965. "Security Prices, Risk, And Maximal Gains From Diversification," Journal of Finance, American Finance Association, vol. 20(4), pages 587-615, December.
    36. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    37. Galsband, Victoria, 2012. "Downside risk of international stock returns," Journal of Banking & Finance, Elsevier, vol. 36(8), pages 2379-2388.
    38. Kim, Moon K. & Zumwalt, J. Kenton, 1979. "An Analysis of Risk in Bull and Bear Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 14(5), pages 1015-1025, December.
    39. Bollerslev, Tim & Li, Sophia Zhengzi & Todorov, Viktor, 2016. "Roughing up beta: Continuous versus discontinuous betas and the cross section of expected stock returns," Journal of Financial Economics, Elsevier, vol. 120(3), pages 464-490.
    40. Yang, Lu & Hamori, Shigeyuki, 2021. "The role of the carbon market in relation to the cryptocurrency market: Only diversification or more?," International Review of Financial Analysis, Elsevier, vol. 77(C).
    41. Ding, Zhuanxin & Granger, Clive W. J., 1996. "Modeling volatility persistence of speculative returns: A new approach," Journal of Econometrics, Elsevier, vol. 73(1), pages 185-215, July.
    42. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    43. Robert Novy-Marx, 2014. "Understanding Defensive Equity," NBER Working Papers 20591, National Bureau of Economic Research, Inc.
    44. Schuhmacher, Frank & Eling, Martin, 2011. "Sufficient conditions for expected utility to imply drawdown-based performance rankings," Journal of Banking & Finance, Elsevier, vol. 35(9), pages 2311-2318, September.
    45. Yiuman Tse, 2016. "Asymmetric Volatility, Skewness, and Downside Risk in Different Asset Classes: Evidence from Futures Markets," The Financial Review, Eastern Finance Association, vol. 51(1), pages 83-111, February.
    46. Harlow, W. V. & Rao, Ramesh K. S., 1989. "Asset Pricing in a Generalized Mean-Lower Partial Moment Framework: Theory and Evidence," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 24(3), pages 285-311, September.
    47. Kofman, Paul & Koedijk, Kees & Campbell, Rachel, 2002. "Increased Correlation in Bear markets: A Downside Risk Perspective," CEPR Discussion Papers 3172, C.E.P.R. Discussion Papers.
    48. Bawa, Vijay S. & Lindenberg, Eric B., 1977. "Capital market equilibrium in a mean-lower partial moment framework," Journal of Financial Economics, Elsevier, vol. 5(2), pages 189-200, November.
    49. Stevenson, Simon, 2001. "Emerging markets, downside risk and the asset allocation decision," Emerging Markets Review, Elsevier, vol. 2(1), pages 50-66, March.
    50. Lamoureux, Christopher G & Lastrapes, William D, 1990. "Persistence in Variance, Structural Change, and the GARCH Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(2), pages 225-234, April.
    51. Kim, Moon K. & Ismail, Badr E., 1998. "An accounting analysis of the risk-return relationship in bull and bear markets," Review of Financial Economics, Elsevier, vol. 7(2), pages 173-182.
    52. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    53. Ngene, Geoffrey M., 2021. "What drives dynamic connectedness of the U.S equity sectors during different business cycles?," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    54. Yigit Atilgan & K. Ozgur Demirtas & A. Doruk Gunaydin, 2020. "Downside beta and the cross section of equity returns: A decade later," European Financial Management, European Financial Management Association, vol. 26(2), pages 316-347, March.
    55. Brooks, Robert D. & Faff, Robert W. & McKenzie, Michael D. & Mitchell, Heather, 2000. "A multi-country study of power ARCH models and national stock market returns," Journal of International Money and Finance, Elsevier, vol. 19(3), pages 377-397, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Jinjing, 2023. "A novel downside beta and expected stock returns," International Review of Financial Analysis, Elsevier, vol. 85(C).
    2. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, September.
    3. Rutkowska-Ziarko, Anna & Markowski, Lesław & Pyke, Christopher & Amin, Saqib, 2022. "Conventional and downside CAPM: The case of London stock exchange," Global Finance Journal, Elsevier, vol. 54(C).
    4. Ngene, Geoffrey & Tah, Kenneth A. & Darrat, Ali F., 2017. "Long memory or structural breaks: Some evidence for African stock markets," Review of Financial Economics, Elsevier, vol. 34(C), pages 61-73.
    5. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    6. Geoffrey Ngene & Kenneth A. Tah & Ali F. Darrat, 2017. "Long memory or structural breaks: Some evidence for African stock markets," Review of Financial Economics, John Wiley & Sons, vol. 34(1), pages 61-73, September.
    7. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    8. Houda Hafsa & Dorra Hmaied, 2012. "Are Downside Higher Order Co-Moments Priced? : Evidence From The French Market," The International Journal of Business and Finance Research, The Institute for Business and Finance Research, vol. 6(1), pages 65-81.
    9. Abderrazak Ben Maatoug & Rim Lamouchi & Russell Davidson & Ibrahim Fatnassi, 2018. "Modelling Foreign Exchange Realized Volatility Using High Frequency Data: Long Memory versus Structural Breaks," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(1), pages 1-25, March.
    10. Dark Jonathan Graeme, 2010. "Estimation of Time Varying Skewness and Kurtosis with an Application to Value at Risk," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(2), pages 1-50, March.
    11. Baillie, Richard T. & Morana, Claudio, 2009. "Modelling long memory and structural breaks in conditional variances: An adaptive FIGARCH approach," Journal of Economic Dynamics and Control, Elsevier, vol. 33(8), pages 1577-1592, August.
    12. Asgar Ali & K. N. Badhani, 2023. "Downside risk matters once the lottery effect is controlled: explaining risk–return relationship in the Indian equity market," Journal of Asset Management, Palgrave Macmillan, vol. 24(1), pages 27-43, February.
    13. Yanlin Shi & Yang Yang, 2018. "Modeling High Frequency Data with Long Memory and Structural Change: A-HYEGARCH Model," Risks, MDPI, vol. 6(2), pages 1-28, March.
    14. Nguyen, Duc Binh Benno & Prokopczuk, Marcel & Sibbertsen, Philipp, 2020. "The memory of stock return volatility: Asset pricing implications," Journal of Financial Markets, Elsevier, vol. 47(C).
    15. McMillan, David G. & Ruiz, Isabel, 2009. "Volatility persistence, long memory and time-varying unconditional mean: Evidence from 10 equity indices," The Quarterly Review of Economics and Finance, Elsevier, vol. 49(2), pages 578-595, May.
    16. Rutkowska – Ziarko, Anna & Markowski, Lesław & Abdou, Hussein A., 2024. "Conditional CAPM relationships in standard and accounting risk approaches," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).
    17. Usman Ayub & Samaila Kausar & Umara Noreen & Muhammad Zakaria & Imran Abbas Jadoon, 2020. "Downside Risk-Based Six-Factor Capital Asset Pricing Model (CAPM): A New Paradigm in Asset Pricing," Sustainability, MDPI, vol. 12(17), pages 1-16, August.
    18. repec:ipg:wpaper:2014-503 is not listed on IDEAS
    19. Charfeddine, Lanouar & Ajmi, Ahdi Noomen, 2013. "The Tunisian stock market index volatility: Long memory vs. switching regime," Emerging Markets Review, Elsevier, vol. 16(C), pages 170-182.
    20. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    21. Gabriel Rodríguez & Roxana Tramontana Tocto, 2015. "Application of a Short Memory Model With Random Level Shifts to the Volatility of Latin American Stock Market Returns," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 52(2), pages 185-211, November.

    More about this item

    Keywords

    Exchange-traded funds; Sectoral allocations; Downside risk; Asymmetry;
    All these keywords.

    JEL classification:

    • E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G23 - Financial Economics - - Financial Institutions and Services - - - Non-bank Financial Institutions; Financial Instruments; Institutional Investors
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:glofin:v:57:y:2023:i:c:s104402832300039x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620162 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.