IDEAS home Printed from https://ideas.repec.org/a/eee/glofin/v20y2009i2p119-127.html
   My bibliography  Save this article

Empirical study on relationship between persistence-free trading volume and stock return volatility

Author

Listed:
  • Fenghua, Wen
  • Xiaoguang, Yang

Abstract

A large body of literature finds that the unexpected trading volume, which is obtained by filtering out time trend, autocorrelation, can be used as a proxy of the information flow and can explain the heteroskedasticity of stock return in some degrees. In this paper, we find that the heteroskedasticity exists in the unexpected trading volume, and we further generate a new information proxy by filtering out the heteroskedasticity from the unexpected trading volume, termed "persistence-free trading volume". Our empirical results indicate that the persistence-free trading volume can explain the heteroskedasticity of the return better than the unexpected trading volume; moreover, the explanatory power of the persistence-free trading volume is positively related to market maturity.

Suggested Citation

  • Fenghua, Wen & Xiaoguang, Yang, 2009. "Empirical study on relationship between persistence-free trading volume and stock return volatility," Global Finance Journal, Elsevier, vol. 20(2), pages 119-127.
  • Handle: RePEc:eee:glofin:v:20:y:2009:i:2:p:119-127
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1044-0283(09)00042-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lamoureux, Christopher G & Lastrapes, William D, 1990. "Heteroskedasticity in Stock Return Data: Volume versus GARCH Effects," Journal of Finance, American Finance Association, vol. 45(1), pages 221-229, March.
    2. Tarun Chordia & Bhaskaran Swaminathan, 2000. "Trading Volume and Cross‐Autocorrelations in Stock Returns," Journal of Finance, American Finance Association, vol. 55(2), pages 913-935, April.
    3. Anirut Pisedtasalasai & Abeyratna Gunasekarage, 2007. "Causal and Dynamic Relationships among Stock Returns, Return Volatility and Trading Volume: Evidence from Emerging markets in South-East Asia," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 14(4), pages 277-297, December.
    4. Lo, Andrew W & Wang, Jiang, 2000. "Trading Volume: Definitions, Data Analysis, and Implications of Portfolio Theory," The Review of Financial Studies, Society for Financial Studies, vol. 13(2), pages 257-300.
    5. Epps, Thomas W & Epps, Mary Lee, 1976. "The Stochastic Dependence of Security Price Changes and Transaction Volumes: Implications for the Mixture-of-Distributions Hypothesis," Econometrica, Econometric Society, vol. 44(2), pages 305-321, March.
    6. Guillermo Llorente & Roni Michaely & Gideon Saar & Jiang Wang, 2002. "Dynamic Volume-Return Relation of Individual Stocks," The Review of Financial Studies, Society for Financial Studies, vol. 15(4), pages 1005-1047.
    7. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    8. M. F. Omran & E. McKenzie, 2000. "Heteroscedasticity in stock returns data revisited: volume versus GARCH effects," Applied Financial Economics, Taylor & Francis Journals, vol. 10(5), pages 553-560.
    9. Harris, Milton & Raviv, Artur, 1993. "Differences of Opinion Make a Horse Race," The Review of Financial Studies, Society for Financial Studies, vol. 6(3), pages 473-506.
    10. Kate Phylaktis & Manolis G Kavussanos & Gikas Manalis, 1996. "Stock prices and the flow of information in the Athens Stock Exchange," European Financial Management, European Financial Management Association, vol. 2(1), pages 113-126, March.
    11. Ho-Mou Wu & Wen-Chung Guo, 2004. "Asset price volatility and trading volume with rational beliefs," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 23(4), pages 795-829, May.
    12. Ramaprasad Bhar & Shigeyuki Hamori, 2004. "Information Flow between Price Change and Trading Volume in Gold Futures Contracts," International Journal of Business and Economics, School of Management Development, Feng Chia University, Taichung, Taiwan, vol. 3(1), pages 45-56, April.
    13. Admati, Anat R. & Pfleiderer, Paul, 1986. "A monopolistic market for information," Journal of Economic Theory, Elsevier, vol. 39(2), pages 400-438, August.
    14. Gallant, A Ronald & Rossi, Peter E & Tauchen, George, 1992. "Stock Prices and Volume," The Review of Financial Studies, Society for Financial Studies, vol. 5(2), pages 199-242.
    15. Covrig, Vicentiu & Ng, Lilian, 2004. "Volume autocorrelation, information, and investor trading," Journal of Banking & Finance, Elsevier, vol. 28(9), pages 2155-2174, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Girardin, Eric & Joyeux, Roselyne, 2013. "Macro fundamentals as a source of stock market volatility in China: A GARCH-MIDAS approach," Economic Modelling, Elsevier, vol. 34(C), pages 59-68.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chuang, Wen-I & Lee, Bong-Soo, 2006. "An empirical evaluation of the overconfidence hypothesis," Journal of Banking & Finance, Elsevier, vol. 30(9), pages 2489-2515, September.
    2. Henryk Gurgul & Roland Mestel & Tomasz Wojtowicz, 2007. "Distribution of volume on the American stock market," Managerial Economics, AGH University of Science and Technology, Faculty of Management, vol. 1, pages 143-163.
    3. Carroll, Rachael & Kearney, Colm, 2015. "Testing the mixture of distributions hypothesis on target stocks," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 39(C), pages 1-14.
    4. Sinha, Pankaj & Agnihotri, Shalini, 2014. "Investigating impact of volatility persistence, market asymmetry and information inflow on volatility of stock indices using bivariate GJR-GARCH," MPRA Paper 58303, University Library of Munich, Germany.
    5. Chuang, Wen-I & Liu, Hsiang-Hsi & Susmel, Rauli, 2012. "The bivariate GARCH approach to investigating the relation between stock returns, trading volume, and return volatility," Global Finance Journal, Elsevier, vol. 23(1), pages 1-15.
    6. Ngene, Geoffrey M. & Mungai, Ann Nduati, 2022. "Stock returns, trading volume, and volatility: The case of African stock markets," International Review of Financial Analysis, Elsevier, vol. 82(C).
    7. Yamani, Ehab, 2023. "Return–volume nexus in financial markets: A survey of research," Research in International Business and Finance, Elsevier, vol. 65(C).
    8. Farag, Hisham & Cressy, Robert, 2011. "Do regulatory policies affect the flow of information in emerging markets?," Research in International Business and Finance, Elsevier, vol. 25(3), pages 238-254, September.
    9. Marcus Alexander Ong, 2015. "An information theoretic analysis of stock returns, volatility and trading volumes," Applied Economics, Taylor & Francis Journals, vol. 47(36), pages 3891-3906, August.
    10. Ho, Kin-Yip & Zheng, Lin & Zhang, Zhaoyong, 2012. "Volume, volatility and information linkages in the stock and option markets," Review of Financial Economics, Elsevier, vol. 21(4), pages 168-174.
    11. Blasco, Natividad & Corredor, Pilar & Del Rio, Cristina & Santamaria, Rafael, 2005. "Bad news and Dow Jones make the Spanish stocks go round," European Journal of Operational Research, Elsevier, vol. 163(1), pages 253-275, May.
    12. Eric Girard & Mohammed Omran, 2009. "On the relationship between trading volume and stock price volatility in CASE," International Journal of Managerial Finance, Emerald Group Publishing Limited, vol. 5(1), pages 110-134, February.
    13. Alizadeh, Amir H., 2013. "Trading volume and volatility in the shipping forward freight market," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 250-265.
    14. Keunbae Ahn, 2021. "Predictable Fluctuations in the Cross-Section and Time-Series of Asset Prices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2021, January-A.
    15. Go, You-How & Lau, Wee-Yeap, 2020. "The impact of global financial crisis on informational efficiency: Evidence from price-volume relation in crude palm oil futures market," Journal of Commodity Markets, Elsevier, vol. 17(C).
    16. Wang, Zijun & Qian, Yan & Wang, Shiwen, 2018. "Dynamic trading volume and stock return relation: Does it hold out of sample?," International Review of Financial Analysis, Elsevier, vol. 58(C), pages 195-210.
    17. Sarika Mahajan & Balwinder Singh, 2008. "An Empirical Analysis of Stock Price-Volume Relationship in Indian Stock Market," Vision, , vol. 12(3), pages 1-13, July.
    18. Sam Howison & David Lamper, 2001. "Trading volume in models of financial derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 8(2), pages 119-135.
    19. Gerlach, Richard & Chen, Cathy W.S. & Lin, Doris S.Y. & Huang, Ming-Hsiang, 2006. "Asymmetric responses of international stock markets to trading volume," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 360(2), pages 422-444.
    20. Omid Sabbaghi & Navid Sabbaghi, 2014. "An empirical analysis of the Carbon Financial Instrument," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 38(2), pages 209-234, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:glofin:v:20:y:2009:i:2:p:119-127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620162 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.