IDEAS home Printed from https://ideas.repec.org/a/eee/gamebe/v74y2012i2p687-698.html
   My bibliography  Save this article

On the accessibility of core-extensions

Author

Listed:
  • Yang, Yi-You

Abstract

Sengupta and Sengupta (1996) study the accessibility of the core of a TU game and show that the core, if non-empty, can be reached from any non-core allocation via a finite sequence of successive blocks. This paper complements the result by showing that when the core is empty, a number of non-empty core-extensions, including the least core and the weak least core (Maschler et al., 1979), the positive core (Orshan and Sudhölter, 2001) and the extended core (Bejan and Gómez, 2009), are accessible in a strong sense, namely each allocation in each of the foregoing core-extensions can be reached from any allocation through a finite sequence of successive blocks.

Suggested Citation

  • Yang, Yi-You, 2012. "On the accessibility of core-extensions," Games and Economic Behavior, Elsevier, vol. 74(2), pages 687-698.
  • Handle: RePEc:eee:gamebe:v:74:y:2012:i:2:p:687-698
    DOI: 10.1016/j.geb.2011.08.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0899825611001357
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.geb.2011.08.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sengupta, Abhijit & Sengupta, Kunal, 1996. "A Property of the Core," Games and Economic Behavior, Elsevier, vol. 12(2), pages 266-273, February.
    2. Klaus, Bettina & Klijn, Flip, 2007. "Paths to stability for matching markets with couples," Games and Economic Behavior, Elsevier, vol. 58(1), pages 154-171, January.
    3. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2010. "On the number of blocks required to access the core," MPRA Paper 26578, University Library of Munich, Germany.
    4. Laussel, Didier & Le Breton, Michel, 2001. "Conflict and Cooperation: The Structure of Equilibrium Payoffs in Common Agency," Journal of Economic Theory, Elsevier, vol. 100(1), pages 93-128, September.
    5. B. Douglas Bernheim & Michael D. Whinston, 1986. "Menu Auctions, Resource Allocation, and Economic Influence," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 101(1), pages 1-31.
    6. Diamantoudi, Effrosyni & Miyagawa, Eiichi & Xue, Licun, 2004. "Random paths to stability in the roommate problem," Games and Economic Behavior, Elsevier, vol. 48(1), pages 18-28, July.
    7. Koczy, Laszlo A., 2006. "The core can be accessed with a bounded number of blocks," Journal of Mathematical Economics, Elsevier, vol. 43(1), pages 56-64, December.
    8. Guni Orshan & Peter Sudhölter, 2010. "The positive core of a cooperative game," International Journal of Game Theory, Springer;Game Theory Society, vol. 39(1), pages 113-136, March.
    9. Gooni Orshan & Peter Sudholter, 2001. "The Positive Core of a Cooperative Game," Discussion Paper Series dp268, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    10. Kaneko, Mamoru & Wooders, Myrna Holtz, 1982. "Cores of partitioning games," Mathematical Social Sciences, Elsevier, vol. 3(4), pages 313-327, December.
    11. SCHMEIDLER, David, 1969. "The nucleolus of a characteristic function game," LIDAM Reprints CORE 44, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    12. Mas-Colell, Andreu, 1989. "An equivalence theorem for a bargaining set," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 129-139, April.
    13. Yang, Yi-You, 2010. "On the accessibility of the core," Games and Economic Behavior, Elsevier, vol. 69(1), pages 194-199, May.
    14. Roth, Alvin E & Vande Vate, John H, 1990. "Random Paths to Stability in Two-Sided Matching," Econometrica, Econometric Society, vol. 58(6), pages 1475-1480, November.
    15. M. Maschler & B. Peleg & L. S. Shapley, 1979. "Geometric Properties of the Kernel, Nucleolus, and Related Solution Concepts," Mathematics of Operations Research, INFORMS, vol. 4(4), pages 303-338, November.
    16. Einy, Ezra & Holzman, Ron & Monderer, Dov, 1999. "On the Least Core and the Mas-Colell Bargaining Set," Games and Economic Behavior, Elsevier, vol. 28(2), pages 181-188, August.
    17. Camelia Bejan & Juan Gómez, 2009. "Core extensions for non-balanced TU-games," International Journal of Game Theory, Springer;Game Theory Society, vol. 38(1), pages 3-16, March.
    18. Wooders, Myrna, 1978. "Equilibria, the core, and jurisdiction structures in economies with a local public good," Journal of Economic Theory, Elsevier, vol. 18(2), pages 328-348, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Péter Szikora, 2013. "Introduction into the literature of cooperative game theory with special emphasis on dynamic games and the core," Proceedings- 11th International Conference on Mangement, Enterprise and Benchmarking (MEB 2013),, Óbuda University, Keleti Faculty of Business and Management.
    2. Mauleon, Ana & Roehl, Nils & Vannetelbosch, Vincent, 2019. "Paths to stability for overlapping group structures," Journal of Mathematical Economics, Elsevier, vol. 83(C), pages 19-24.
    3. Bando, Keisuke & Kawasaki, Ryo, 2021. "Stability properties of the core in a generalized assignment problem," Games and Economic Behavior, Elsevier, vol. 130(C), pages 211-223.
    4. Yi-You Yang, 2020. "On the characterizations of viable proposals," Theory and Decision, Springer, vol. 89(4), pages 453-469, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. László Á. Kóczy, 2018. "Partition Function Form Games," Theory and Decision Library C, Springer, number 978-3-319-69841-0, September.
    2. Herings, P. Jean-Jacques & Kóczy, László Á., 2021. "The equivalence of the minimal dominant set and the myopic stable set for coalition function form games," Games and Economic Behavior, Elsevier, vol. 127(C), pages 67-79.
    3. Bando, Keisuke & Kawasaki, Ryo, 2021. "Stability properties of the core in a generalized assignment problem," Games and Economic Behavior, Elsevier, vol. 130(C), pages 211-223.
    4. Yi-You Yang, 2020. "On the characterizations of viable proposals," Theory and Decision, Springer, vol. 89(4), pages 453-469, November.
    5. Mauleon, Ana & Roehl, Nils & Vannetelbosch, Vincent, 2019. "Paths to stability for overlapping group structures," Journal of Mathematical Economics, Elsevier, vol. 83(C), pages 19-24.
    6. Klaus, Bettina & Newton, Jonathan, 2016. "Stochastic stability in assignment problems," Journal of Mathematical Economics, Elsevier, vol. 62(C), pages 62-74.
    7. Heinrich Nax & Bary Pradelski, 2015. "Evolutionary dynamics and equitable core selection in assignment games," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(4), pages 903-932, November.
    8. Péter Szikora, 2013. "Introduction into the literature of cooperative game theory with special emphasis on dynamic games and the core," Proceedings- 11th International Conference on Mangement, Enterprise and Benchmarking (MEB 2013),, Óbuda University, Keleti Faculty of Business and Management.
    9. Chen, Haoxun, 2017. "Undominated nonnegative excesses and core extensions of transferable utility games," European Journal of Operational Research, Elsevier, vol. 261(1), pages 222-233.
    10. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2010. "On the number of blocks required to access the core," MPRA Paper 26578, University Library of Munich, Germany.
    11. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2011. "On the number of blocks required to access the coalition structure core," MPRA Paper 29755, University Library of Munich, Germany.
    12. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2013. "An optimal bound to access the core in TU-games," Games and Economic Behavior, Elsevier, vol. 80(C), pages 1-9.
    13. Demange, Gabrielle, 2009. "The strategy structure of some coalition formation games," Games and Economic Behavior, Elsevier, vol. 65(1), pages 83-104, January.
    14. Yang, Yi-You, 2011. "Accessible outcomes versus absorbing outcomes," Mathematical Social Sciences, Elsevier, vol. 62(1), pages 65-70, July.
    15. Jean Derks & Hans Peters & Peter Sudhölter, 2014. "On extensions of the core and the anticore of transferable utility games," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(1), pages 37-63, February.
    16. Koczy, Laszlo A., 2006. "The core can be accessed with a bounded number of blocks," Journal of Mathematical Economics, Elsevier, vol. 43(1), pages 56-64, December.
    17. Bettina Klaus & Flip Klijn & Markus Walzl, 2011. "Farsighted Stability for Roommate Markets," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 13(6), pages 921-933, December.
    18. Emiliya Lazarova & Dinko Dimitrov, 2017. "Paths to stability in two-sided matching under uncertainty," International Journal of Game Theory, Springer;Game Theory Society, vol. 46(1), pages 29-49, March.
    19. Rene van den Brink & Ilya Katsev & Gerard van der Laan, 2023. "Properties of Solutions for Games on Union-Closed Systems," Mathematics, MDPI, vol. 11(4), pages 1-16, February.
    20. Newton, Jonathan & Sawa, Ryoji, 2015. "A one-shot deviation principle for stability in matching problems," Journal of Economic Theory, Elsevier, vol. 157(C), pages 1-27.

    More about this item

    Keywords

    Accessibility; Core; Core-extensions;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:74:y:2012:i:2:p:687-698. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622836 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.