IDEAS home Printed from https://ideas.repec.org/a/eee/gamebe/v68y2010i2p602-613.html
   My bibliography  Save this article

Partial exposure in large games

Author

Listed:
  • Gradwohl, Ronen
  • Reingold, Omer

Abstract

In this work we introduce the notion of partial exposure, in which the players of a simultaneous-move Bayesian game are exposed to the realized types and chosen actions of a subset of the other players. We show that in any large simultaneous-move game, each player has very little regret even after being partially exposed to other players. If players are given the opportunity to be exposed to others at the expense of a small decrease in utility, players will decline this opportunity, and the original Nash equilibria of the game will survive.

Suggested Citation

  • Gradwohl, Ronen & Reingold, Omer, 2010. "Partial exposure in large games," Games and Economic Behavior, Elsevier, vol. 68(2), pages 602-613, March.
  • Handle: RePEc:eee:gamebe:v:68:y:2010:i:2:p:602-613
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0899-8256(09)00189-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Edward Cartwright & Myrna Wooders, 2009. "On equilibrium in pure strategies in games with many players," International Journal of Game Theory, Springer;Game Theory Society, vol. 38(1), pages 137-153, March.
    2. Wooders, Myrna & Cartwright, Edward & Selten, Reinhard, 2006. "Behavioral conformity in games with many players," Games and Economic Behavior, Elsevier, vol. 57(2), pages 347-360, November.
    3. Ehud Kalai, 2005. "Partially-Specified Large Games," Levine's Bibliography 784828000000000565, UCLA Department of Economics.
    4. Halpern, Joseph Y., 2003. "A computer scientist looks at game theory," Games and Economic Behavior, Elsevier, vol. 45(1), pages 114-131, October.
    5. Carmona, Guilherme & Podczeck, Konrad, 2009. "On the existence of pure-strategy equilibria in large games," Journal of Economic Theory, Elsevier, vol. 144(3), pages 1300-1319, May.
    6. Ehud Kalai, 2004. "Large Robust Games," Econometrica, Econometric Society, vol. 72(6), pages 1631-1665, November.
    7. George J. Mailath & Andrew Postlewaite, 1990. "Asymmetric Information Bargaining Problems with Many Agents," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 57(3), pages 351-367.
    8. Carmona, Guilherme, 2008. "Purification of Bayesian-Nash equilibria in large games with compact type and action spaces," Journal of Mathematical Economics, Elsevier, vol. 44(12), pages 1302-1311, December.
    9. Blonski, Matthias, 2000. "Characterization of pure strategy equilibria in finite anonymous games," Journal of Mathematical Economics, Elsevier, vol. 34(2), pages 225-233, October.
    10. SCHMEIDLER, David, 1973. "Equilibrium points of nonatomic games," LIDAM Reprints CORE 146, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    11. Azrieli, Yaron, 2009. "Categorizing others in a large game," Games and Economic Behavior, Elsevier, vol. 67(2), pages 351-362, November.
    12. Al-Najjar, Nabil I. & Smorodinsky, Rann, 2000. "Pivotal Players and the Characterization of Influence," Journal of Economic Theory, Elsevier, vol. 92(2), pages 318-342, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carmona, Guilherme & Podczeck, Konrad, 2012. "Ex-post stability of Bayes–Nash equilibria of large games," Games and Economic Behavior, Elsevier, vol. 74(1), pages 418-430.
    2. Deb, Joyee & Kalai, Ehud, 2015. "Stability in large Bayesian games with heterogeneous players," Journal of Economic Theory, Elsevier, vol. 157(C), pages 1041-1055.
    3. Ron Peretz & Amnon Schreiber & Ernst Schulte-Geers, 2022. "The Lipschitz constant of perturbed anonymous games," International Journal of Game Theory, Springer;Game Theory Society, vol. 51(2), pages 293-306, June.
    4. Carmona, Guilherme & Podczeck, Konrad, 2020. "Pure strategy Nash equilibria of large finite-player games and their relationship to non-atomic games," Journal of Economic Theory, Elsevier, vol. 187(C).
    5. Yaron Azrieli & Eran Shmaya, 2013. "Lipschitz Games," Mathematics of Operations Research, INFORMS, vol. 38(2), pages 350-357, May.
    6. Gradwohl, Ronen & Reingold, Omer, 2014. "Fault tolerance in large games," Games and Economic Behavior, Elsevier, vol. 86(C), pages 438-457.
    7. Yang, Jian, 2022. "A Bayesian nonatomic game and its applicability to finite-player situations," Journal of Mathematical Economics, Elsevier, vol. 102(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yaron Azrieli & Eran Shmaya, 2013. "Lipschitz Games," Mathematics of Operations Research, INFORMS, vol. 38(2), pages 350-357, May.
    2. Deb, Joyee & Kalai, Ehud, 2015. "Stability in large Bayesian games with heterogeneous players," Journal of Economic Theory, Elsevier, vol. 157(C), pages 1041-1055.
    3. Kalai, Ehud & Shmaya, Eran, 2018. "Large strategic dynamic interactions," Journal of Economic Theory, Elsevier, vol. 178(C), pages 59-81.
    4. Edward Cartwright & Myrna Wooders, 2009. "On equilibrium in pure strategies in games with many players," International Journal of Game Theory, Springer;Game Theory Society, vol. 38(1), pages 137-153, March.
    5. Azrieli, Yaron, 2009. "Categorizing others in a large game," Games and Economic Behavior, Elsevier, vol. 67(2), pages 351-362, November.
    6. Yang, Jian, 2022. "A Bayesian nonatomic game and its applicability to finite-player situations," Journal of Mathematical Economics, Elsevier, vol. 102(C).
    7. Noguchi, Mitsunori, 2010. "Large but finite games with asymmetric information," Journal of Mathematical Economics, Elsevier, vol. 46(2), pages 191-213, March.
    8. Carmona, Guilherme & Podczeck, Konrad, 2009. "On the existence of pure-strategy equilibria in large games," Journal of Economic Theory, Elsevier, vol. 144(3), pages 1300-1319, May.
    9. Edward Cartwright & Myrna Wooders, 2008. "Behavioral Properties of Correlated Equilibrium; Social Group Structures with Conformity and Stereotyping," Vanderbilt University Department of Economics Working Papers 0814, Vanderbilt University Department of Economics.
    10. Edward Cartwright & Myrna Wooders, 2009. "On purification of equilibrium in Bayesian games and expost Nash equilibrium," International Journal of Game Theory, Springer;Game Theory Society, vol. 38(1), pages 127-136, March.
    11. Edward Cartwright & Myrna Wooders, 2014. "Correlated Equilibrium, Conformity, and Stereotyping in Social Groups," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 16(5), pages 743-766, October.
    12. Saif Benjaafar & Harald Bernhard & Costas Courcoubetis & Michail Kanakakis & Spyridon Papafragkos, 2022. "Drivers, Riders, and Service Providers: The Impact of the Sharing Economy on Mobility," Management Science, INFORMS, vol. 68(1), pages 123-142, January.
    13. Carmona, Guilherme & Podczeck, Konrad, 2020. "Pure strategy Nash equilibria of large finite-player games and their relationship to non-atomic games," Journal of Economic Theory, Elsevier, vol. 187(C).
    14. Gradwohl, Ronen & Reingold, Omer, 2014. "Fault tolerance in large games," Games and Economic Behavior, Elsevier, vol. 86(C), pages 438-457.
    15. Al-Najjar, Nabil I., 2008. "Large games and the law of large numbers," Games and Economic Behavior, Elsevier, vol. 64(1), pages 1-34, September.
    16. Camacho, Carmen & Kamihigashi, Takashi & Sağlam, Çağrı, 2018. "Robust comparative statics for non-monotone shocks in large aggregative games," Journal of Economic Theory, Elsevier, vol. 174(C), pages 288-299.
    17. Guilherme Carmona, 2004. "On the existence of pure strategy nash equilibria in large games," Nova SBE Working Paper Series wp465, Universidade Nova de Lisboa, Nova School of Business and Economics.
    18. Hannu Salonen, 2010. "On the existence of Nash equilibria in large games," International Journal of Game Theory, Springer;Game Theory Society, vol. 39(3), pages 351-357, July.
    19. Wang, Yan & Yang, Jian & Qi, Lian, 2017. "A game-theoretic model for the role of reputation feedback systems in peer-to-peer commerce," International Journal of Production Economics, Elsevier, vol. 191(C), pages 178-193.
    20. Stefan Behringer, 2005. "The Provision of a Public Good with a direct Provision Technology and Large Number of Agents," JEPS Working Papers 05-007, JEPS.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:68:y:2010:i:2:p:602-613. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622836 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.