IDEAS home Printed from https://ideas.repec.org/a/eee/forpol/v93y2018icp18-29.html
   My bibliography  Save this article

To replant or to irrigate: A silvicultural decision model for afforestation projects

Author

Listed:
  • Del Río San José, Jorge
  • Reque Kilchenmann, José
  • Martínez De Azagra Paredes, Andrés

Abstract

This article develops an economic model that compares the option of replacement planting to maintain target density with the option of enhancing seedling survival from the beginning by applying irrigation. The model we develop uses variables common in forestry practice and yields the threshold value of seedling failure at which both alternatives offer the same economic result based on a comparative analysis of costs and benefits. By comparing this threshold with the level of seedling failure expected for an afforestation in the absence of irrigation, the planner can make an informed decision between both alternatives. The model has been applied to thirteen practical cases covering a wide range of plantations with different density, purpose and average annual net income. Based on the results obtained, a k-means clustering is carried out to identify five groups according to their suitability for irrigation. The sensitivity of the model's input variables in respect to the threshold of seedling failure is also analized. Irrigation is profitable when the expected level of seedling failure is high and/or the value of the threshold decision is low. The latter is usually the case at afforestations that require a low acceptable level of seedling failure and/or in productive plantation forestry.

Suggested Citation

  • Del Río San José, Jorge & Reque Kilchenmann, José & Martínez De Azagra Paredes, Andrés, 2018. "To replant or to irrigate: A silvicultural decision model for afforestation projects," Forest Policy and Economics, Elsevier, vol. 93(C), pages 18-29.
  • Handle: RePEc:eee:forpol:v:93:y:2018:i:c:p:18-29
    DOI: 10.1016/j.forpol.2018.05.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1389934118300716
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.forpol.2018.05.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Utkur Djanibekov & Asia Khamzina, 2016. "Stochastic Economic Assessment of Afforestation on Marginal Land in Irrigated Farming System," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 63(1), pages 95-117, January.
    2. Mikael Rönnqvist & Sophie D’Amours & Andres Weintraub & Alejandro Jofre & Eldon Gunn & Robert Haight & David Martell & Alan Murray & Carlos Romero, 2015. "Operations Research challenges in forestry: 33 open problems," Annals of Operations Research, Springer, vol. 232(1), pages 11-40, September.
    3. Macmillan, Douglas C. & Harley, David & Morrison, Ruth, 1998. "Cost-effectiveness analysis of woodland ecosystem restoration," Ecological Economics, Elsevier, vol. 27(3), pages 313-324, December.
    4. Robert Tibshirani & Guenther Walther & Trevor Hastie, 2001. "Estimating the number of clusters in a data set via the gap statistic," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 411-423.
    5. Masiero, Mauro & Secco, Laura & Pettenella, Davide & Brotto, Lucio, 2015. "Standards and guidelines for forest plantation management: A global comparative study," Forest Policy and Economics, Elsevier, vol. 53(C), pages 29-44.
    6. Hildebrandt, Patrick & Knoke, Thomas, 2011. "Investment decisions under uncertainty--A methodological review on forest science studies," Forest Policy and Economics, Elsevier, vol. 13(1), pages 1-15, January.
    7. Keith M. Reynolds & Mark Twery & Manfred J. Lexer & Harald Vacik & Duncan Ray & Guofan Shao & Jose G. Borges, 2008. "Decision Support Systems in Forest Management," International Handbooks on Information Systems, in: Handbook on Decision Support Systems 2, chapter 60, pages 499-533, Springer.
    8. B. Bare & Andres Weintraub, 2015. "Brief history of systems analysis in forest resources," Annals of Operations Research, Springer, vol. 232(1), pages 1-10, September.
    9. Bor, Yunchang Jeffrey, 1995. "Optimal pest management and economic threshold," Agricultural Systems, Elsevier, vol. 49(2), pages 113-133.
    10. Andrés Weintraub & Carlos Romero, 2006. "Operations Research Models and the Management of Agricultural and Forestry Resources: A Review and Comparison," Interfaces, INFORMS, vol. 36(5), pages 446-457, October.
    11. Wainger, Lisa A. & King, Dennis M. & Mack, Richard N. & Price, Elizabeth W. & Maslin, Thomas, 2010. "Can the concept of ecosystem services be practically applied to improve natural resource management decisions?," Ecological Economics, Elsevier, vol. 69(5), pages 978-987, March.
    12. R. Mechler, 2016. "Reviewing estimates of the economic efficiency of disaster risk management: opportunities and limitations of using risk-based cost–benefit analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 2121-2147, April.
    13. Martell, David L. & Gunn, Eldon A. & Weintraub, Andres, 1998. "Forest management challenges for operational researchers," European Journal of Operational Research, Elsevier, vol. 104(1), pages 1-17, January.
    14. Grêt-Regamey, Adrienne & Sirén, Elina & Brunner, Sibyl Hanna & Weibel, Bettina, 2017. "Review of decision support tools to operationalize the ecosystem services concept," Ecosystem Services, Elsevier, vol. 26(PB), pages 306-315.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Venn, Tyron J. & Dorries, Jack W. & McGavin, Robert L., 2021. "A mathematical model to support investment in veneer and LVL manufacturing in subtropical eastern Australia," Forest Policy and Economics, Elsevier, vol. 128(C).
    2. Mustapha Ouhimmou & Sophie D'Amours & Robert Beauregard & Daoud Ait-Kadi & Satyaveer Singh Chauhan, 2009. "Optimization Helps Shermag Gain Competitive Edge," Interfaces, INFORMS, vol. 39(4), pages 329-345, August.
    3. Susanne Neuner & Thomas Knoke, 2017. "Economic consequences of altered survival of mixed or pure Norway spruce under a dryer and warmer climate," Climatic Change, Springer, vol. 140(3), pages 519-531, February.
    4. Minas, James P. & Hearne, John W. & Martell, David L., 2014. "A spatial optimisation model for multi-period landscape level fuel management to mitigate wildfire impacts," European Journal of Operational Research, Elsevier, vol. 232(2), pages 412-422.
    5. Pascual, Adrián, 2021. "Building Pareto Frontiers under tree-level forest planning using airborne laser scanning, growth models and spatial optimization," Forest Policy and Economics, Elsevier, vol. 128(C).
    6. Baselli, Gianluca & Contreras, Felipe & Lillo, Matías & Marín, Magdalena & Carrasco, Rodrigo A., 2020. "Optimal decisions for salvage logging after wildfires," Omega, Elsevier, vol. 96(C).
    7. Cerdá, Emilio & Martín-Barroso, David, 2013. "Optimal control for forest management and conservation analysis in dehesa ecosystems," European Journal of Operational Research, Elsevier, vol. 227(3), pages 515-526.
    8. Valencia Torres, Angélica & Tiwari, Chetan & Atkinson, Samuel F., 2021. "Progress in ecosystem services research: A guide for scholars and practitioners," Ecosystem Services, Elsevier, vol. 49(C).
    9. Jose Mosquera & Mordecai Henig & Andres Weintraub, 2011. "Design of insurance contracts using stochastic programming in forestry planning," Annals of Operations Research, Springer, vol. 190(1), pages 117-130, October.
    10. Gomes, Vanessa de Souza & Monti, Cássio Augusto Ussi & Silva, Carolina Souza Jarochinski e & Gomide, Lucas Rezende, 2021. "Operational harvest planning under forest road maintenance uncertainty," Forest Policy and Economics, Elsevier, vol. 131(C).
    11. De la Fuente, Rodrigo & Aguayo, Maichel M. & Contreras-Bolton, Carlos, 2024. "An optimization-based approach for an integrated forest fire monitoring system with multiple technologies and surveillance drones," European Journal of Operational Research, Elsevier, vol. 313(2), pages 435-451.
    12. Nørstebø, Vibeke S. & Johansen, Ulf, 2013. "Optimal transportation of logs and location of quay facilities in coastal regions of Norway," Forest Policy and Economics, Elsevier, vol. 26(C), pages 71-81.
    13. Boerema, A. & Van Passel, S. & Meire, P., 2018. "Cost-Effectiveness Analysis of Ecosystem Management With Ecosystem Services: From Theory to Practice," Ecological Economics, Elsevier, vol. 152(C), pages 207-218.
    14. Miguel A. Lejeune & Janne Kettunen, 2017. "Managing Reliability and Stability Risks in Forest Harvesting," Manufacturing & Service Operations Management, INFORMS, vol. 19(4), pages 620-638, October.
    15. Pamela Alvarez & Jorge Vera, 2014. "Application of Robust Optimization to the Sawmill Planning Problem," Annals of Operations Research, Springer, vol. 219(1), pages 457-475, August.
    16. Thiemo Fetzer & Samuel Marden, 2017. "Take What You Can: Property Rights, Contestability and Conflict," Economic Journal, Royal Economic Society, vol. 0(601), pages 757-783, May.
    17. Daniel Agness & Travis Baseler & Sylvain Chassang & Pascaline Dupas & Erik Snowberg, 2022. "Valuing the Time of the Self-Employed," Working Papers 2022-2, Princeton University. Economics Department..
    18. Khanh Duong, 2024. "Is meritocracy just? New evidence from Boolean analysis and Machine learning," Journal of Computational Social Science, Springer, vol. 7(2), pages 1795-1821, October.
    19. Kai L. Ross & Sándor F. Tóth & Weikko S. Jaross, 2018. "Forest Harvest Scheduling with Endogenous Road Costs," Interfaces, INFORMS, vol. 48(3), pages 260-270, June.
    20. Orietta Nicolis & Jean Paul Maidana & Fabian Contreras & Danilo Leal, 2024. "Analyzing the Impact of COVID-19 on Economic Sustainability: A Clustering Approach," Sustainability, MDPI, vol. 16(4), pages 1-30, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:forpol:v:93:y:2018:i:c:p:18-29. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/forpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.