IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v152y2018icp207-218.html
   My bibliography  Save this article

Cost-Effectiveness Analysis of Ecosystem Management With Ecosystem Services: From Theory to Practice

Author

Listed:
  • Boerema, A.
  • Van Passel, S.
  • Meire, P.

Abstract

Integrated ecosystem management is challenging due to many, often conflicting, targets and limited resources to allocate. A valuable and straightforward approach is to integrate an ecosystem services assessment in a cost-effectiveness analysis as method to evaluate and compare the cost-effectiveness of several management scenarios to reach one or more objectives and take into account the potential effects on other ecosystem functions and services. Nevertheless, this method is not commonly used in ecosystem management evaluation but can provide an alternative for the frequently used but often contested cost-benefit analysis (which requires the step of assigning a monetary value to each benefit). The aim of this study is to apply the cost-effectiveness analysis in combination with an ecosystem services assessment on a real case-study (comparing alternative management strategies for estuaries) to derive lessons learned to go from theory to practice. The application of this method for the case-study reveals many remaining challenges such as data availability and knowledge to assess ecosystem effects of management measures. Nevertheless, the analysis demonstrates that this method can be used for making a more integrated evaluation and supporting better-informed management decisions.

Suggested Citation

  • Boerema, A. & Van Passel, S. & Meire, P., 2018. "Cost-Effectiveness Analysis of Ecosystem Management With Ecosystem Services: From Theory to Practice," Ecological Economics, Elsevier, vol. 152(C), pages 207-218.
  • Handle: RePEc:eee:ecolec:v:152:y:2018:i:c:p:207-218
    DOI: 10.1016/j.ecolecon.2018.06.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921800917312028
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolecon.2018.06.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Breen, Benjamin & Hynes, Stephen, 2014. "Shortcomings in the European principles of Integrated Coastal Zone Management (ICZM): Assessing the implications for locally orientated coastal management using Biome Portfolio Analysis (BPA)," Marine Policy, Elsevier, vol. 44(C), pages 406-418.
    2. Macmillan, Douglas C. & Harley, David & Morrison, Ruth, 1998. "Cost-effectiveness analysis of woodland ecosystem restoration," Ecological Economics, Elsevier, vol. 27(3), pages 313-324, December.
    3. Vogt-Schilb, Adrien & Hallegatte, Stéphane, 2014. "Marginal abatement cost curves and the optimal timing of mitigation measures," Energy Policy, Elsevier, vol. 66(C), pages 645-653.
    4. Steven Broekx & Steven Smets & Inge Liekens & Dirk Bulckaen & Leo Nocker, 2011. "Designing a long-term flood risk management plan for the Scheldt estuary using a risk-based approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 57(2), pages 245-266, May.
    5. Jacobs, Sander & Wolfstein, Kirsten & Vandenbruwaene, Wouter & Vrebos, Dirk & Beauchard, Olivier & Maris, Tom & Meire, Patrick, 2015. "Detecting ecosystem service trade-offs and synergies: A practice-oriented application in four industrialized estuaries," Ecosystem Services, Elsevier, vol. 16(C), pages 378-389.
    6. Joshua M.Duke & Steven J. Dundas & Kent D. Messer, 2012. "Cost Effective Conservation Planning: Twenty Lessons from Economics," Working Papers 12-01, University of Delaware, Department of Economics.
    7. Dominic Moran & Michael Macleod & Eileen Wall & Vera Eory & Alistair McVittie & Andrew Barnes & Robert Rees & Cairistiona F. E. Topp & Andrew Moxey, 2011. "Marginal Abatement Cost Curves for UK Agricultural Greenhouse Gas Emissions," Journal of Agricultural Economics, Wiley Blackwell, vol. 62(1), pages 93-118, February.
    8. MacLeod, Michael & Moran, Dominic & Eory, Vera & Rees, R.M. & Barnes, Andrew & Topp, Cairistiona F.E. & Ball, Bruce & Hoad, Steve & Wall, Eileen & McVittie, Alistair & Pajot, Guillaume & Matthews, Rob, 2010. "Developing greenhouse gas marginal abatement cost curves for agricultural emissions from crops and soils in the UK," Agricultural Systems, Elsevier, vol. 103(4), pages 198-209, May.
    9. Suzuki, Yukari & Iwasa, Yoh, 2009. "Conflict between groups of players in coupled socio-economic and ecological dynamics," Ecological Economics, Elsevier, vol. 68(4), pages 1106-1115, February.
    10. Zhang, Jianjun & Fu, Meichen & Zhang, Zhongya & Tao, Jin & Fu, Wei, 2014. "A trade-off approach of optimal land allocation between socio-economic development and ecological stability," Ecological Modelling, Elsevier, vol. 272(C), pages 175-187.
    11. Prato, Tony, 2007. "Selection and evaluation of projects to conserve ecosystem services," Ecological Modelling, Elsevier, vol. 203(3), pages 290-296.
    12. Balana, Bedru Babulo & Vinten, Andy & Slee, Bill, 2011. "A review on cost-effectiveness analysis of agri-environmental measures related to the EU WFD: Key issues, methods, and applications," Ecological Economics, Elsevier, vol. 70(6), pages 1021-1031, April.
    13. Turner, R. Kerry & Paavola, Jouni & Cooper, Philip & Farber, Stephen & Jessamy, Valma & Georgiou, Stavros, 2003. "Valuing nature: lessons learned and future research directions," Ecological Economics, Elsevier, vol. 46(3), pages 493-510, October.
    14. Comello, Stephen D. & Maltais-Landry, Gabriel & Schwegler, Benedict R. & Lepech, Michael D., 2014. "Firm-level ecosystem service valuation using mechanistic biogeochemical modeling and functional substitutability," Ecological Economics, Elsevier, vol. 100(C), pages 63-73.
    15. Wainger, Lisa A. & King, Dennis M. & Mack, Richard N. & Price, Elizabeth W. & Maslin, Thomas, 2010. "Can the concept of ecosystem services be practically applied to improve natural resource management decisions?," Ecological Economics, Elsevier, vol. 69(5), pages 978-987, March.
    16. Dieter Helm & Cameron Hepburn, 2012. "The economic analysis of biodiversity: an assessment," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 28(1), pages 1-21, Spring.
    17. Crossman, Neville D. & Bryan, Brett A., 2009. "Identifying cost-effective hotspots for restoring natural capital and enhancing landscape multifunctionality," Ecological Economics, Elsevier, vol. 68(3), pages 654-668, January.
    18. Yang, Wei, 2011. "A multi-objective optimization approach to allocate environmental flows to the artificially restored wetlands of China's Yellow River Delta," Ecological Modelling, Elsevier, vol. 222(2), pages 261-267.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. V. Myaskov & A. S. Tulupov & O. V. Zhironkina & V. S. Zaitsev, 2018. "The mechanism of variants of ecosystem conservation options taking into accounting regional and technological features of mining enterprises," Russian Journal of Industrial Economics, MISIS, vol. 11(3).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruijs, A. & Wossink, A. & Kortelainen, M. & Alkemade, R. & Schulp, C.J.E., 2013. "Trade-off analysis of ecosystem services in Eastern Europe," Ecosystem Services, Elsevier, vol. 4(C), pages 82-94.
    2. Peng, Bin-Bin & Xu, Jin-Hua & Fan, Ying, 2018. "Modeling uncertainty in estimation of carbon dioxide abatement costs of energy-saving technologies for passenger cars in China," Energy Policy, Elsevier, vol. 113(C), pages 306-319.
    3. Minihan, Erin S. & Wu, Ziping, 2011. "The Potential Economic and Environmental Costs of GHG Mitigation Measures for Cattle Sectors in Northern Ireland," 85th Annual Conference, April 18-20, 2011, Warwick University, Coventry, UK 108779, Agricultural Economics Society.
    4. Blandford, David & Gaasland, Ivar & Vardal, Erling, 2016. "Now that the party’s over: achieving GHG emission reduction commitments in Norwegian agriculture," 90th Annual Conference, April 4-6, 2016, Warwick University, Coventry, UK 236330, Agricultural Economics Society.
    5. Wettemann, Patrick Johannes Christopher & Latacz-Lohmann, Uwe, 2017. "An efficiency-based concept to assess potential cost and greenhouse gas savings on German dairy farms," Agricultural Systems, Elsevier, vol. 152(C), pages 27-37.
    6. Jeong, Kwangbok & Hong, Taehoon & Kim, Jimin & Cho, Kyuman, 2019. "Development of a multi-objective optimization model for determining the optimal CO2 emissions reduction strategies for a multi-family housing complex," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 118-131.
    7. Xing Zhao & Xin Zhang, 2022. "Research on the Evaluation and Regional Differences in Carbon Emissions Efficiency of Cultural and Related Manufacturing Industries in China’s Yangtze River Basin," Sustainability, MDPI, vol. 14(17), pages 1-22, August.
    8. Isabel Teichmann, 2015. "An Economic Assessment of Soil Carbon Sequestration with Biochar in Germany," Discussion Papers of DIW Berlin 1476, DIW Berlin, German Institute for Economic Research.
    9. Boerema, Annelies & Schoelynck, Jonas & Bal, Kris & Vrebos, Dirk & Jacobs, Sander & Staes, Jan & Meire, Patrick, 2014. "Economic valuation of ecosystem services, a case study for aquatic vegetation removal in the Nete catchment (Belgium)," Ecosystem Services, Elsevier, vol. 7(C), pages 46-56.
    10. Benjamin Dequiedt & Dominic Moran, 2014. "The cost of emissions mitigation by legume crops in French agriculture," Working Papers 1410, Chaire Economie du climat.
    11. Branca, Giacomo & Lipper, Leslie & Sorrentino, Alessandro, 2012. "Benefit-costs analysis of climate-related agricultural investments in Africa: a case study," 2012 First Congress, June 4-5, 2012, Trento, Italy 124109, Italian Association of Agricultural and Applied Economics (AIEAA).
    12. Ho¨lzinger, Oliver & Horst, Dan van der & Sadler, Jon, 2014. "City-wide Ecosystem Assessments—Lessons from Birmingham," Ecosystem Services, Elsevier, vol. 9(C), pages 98-105.
    13. Lin Meng & Wentao Si, 2022. "Pro-Environmental Behavior: Examining the Role of Ecological Value Cognition, Environmental Attitude, and Place Attachment among Rural Farmers in China," IJERPH, MDPI, vol. 19(24), pages 1-24, December.
    14. Wagner, Susanne & Angenendt, Elisabeth & Beletskaya, Olga & Zeddies, Jürgen, 2015. "Costs and benefits of ammonia and particulate matter abatement in German agriculture including interactions with greenhouse gas emissions," Agricultural Systems, Elsevier, vol. 141(C), pages 58-68.
    15. Blandford, David & Gaasland, Ivar & Hassapoyannes, Katharina & Vardal, Erling, 2015. "Policy options for GHG mitigation under autarky: a conceptual and empirical analysis for Norway," 89th Annual Conference, April 13-15, 2015, Warwick University, Coventry, UK 204211, Agricultural Economics Society.
    16. Huber, Robert & Tarruella, Marta & Schäfer, David & Finger, Robert, 2023. "Marginal climate change abatement costs in Swiss dairy production considering farm heterogeneity and interaction effects," Agricultural Systems, Elsevier, vol. 207(C).
    17. Cordelia Kreft & Robert Huber & David Schäfer & Robert Finger, 2024. "Quantifying the impact of farmers' social networks on the effectiveness of climate change mitigation policies in agriculture," Journal of Agricultural Economics, Wiley Blackwell, vol. 75(1), pages 298-322, February.
    18. Daniel May & Ourania Tremma, 2023. "Effects of Sustainable Regulations at Agricultural International Market Failures: A Dynamic Approach," Sustainability, MDPI, vol. 15(3), pages 1-10, January.
    19. Safa Baccour & Jose Albiac & Taher Kahil, 2021. "Cost-Effective Mitigation of Greenhouse Gas Emissions in the Agriculture of Aragon, Spain," IJERPH, MDPI, vol. 18(3), pages 1-19, January.
    20. A. Ruijs & M. Kortelainen & A. Wossink & C.J.E. Schulp & R. Alkemade & Paul Madden, 2012. "Opportunity cost estimation of ecosystem services," Economics Discussion Paper Series 1222, Economics, The University of Manchester.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:152:y:2018:i:c:p:207-218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.