Are the Finnish targets for the energy use of forest chips realistic--Assessment with a spatial market model
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Savolainen, Kati, 2003. "Co-firing of biomass in coal-fired utility boilers," Applied Energy, Elsevier, vol. 74(3-4), pages 369-381, March.
- Tromborg, Erik & Bolkesjo, Torjus Folsland & Solberg, Birger, 2007. "Impacts of policy means for increased use of forest-based bioenergy in Norway--A spatial partial equilibrium analysis," Energy Policy, Elsevier, vol. 35(12), pages 5980-5990, December.
- Kallio, A. Maarit I. & Hänninen, Riitta & Vainikainen, Nina & Luque, Sandra, 2008. "Biodiversity value and the optimal location of forest conservation sites in Southern Finland," Ecological Economics, Elsevier, vol. 67(2), pages 232-243, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Caurla, Sylvain & Bertrand, Vincent & Delacote, Philippe & Le Cadre, Elodie, 2018.
"Heat or power: How to increase the use of energy wood at the lowest cost?,"
Energy Economics, Elsevier, vol. 75(C), pages 85-103.
- Vincent Bertrand & Sylvain Caurla & Elodie Le Cadre & Philippe Delacote, 2017. "Heat or power: how to increase the use of energy wood at the lowest costs?," Working Papers 2017-12, CRESE.
- Vincent Bertrand & Sylvain Caurla & Elodie Le Cadre & Philippe Delacote, 2017. "Heat or power: how to increase the use of energy wood at the lowest costs?," Working Papers 1707, Chaire Economie du climat.
- Sylvain Caurla & Vincent Bertrand & Philippe Delacote & Elodie Le Cadre, 2018. "Heat or power : How to increase the use of energy wood at the lowest cost ?," Post-Print hal-02018424, HAL.
- Vincent Bertrand & Sylvain Caurla & Elodie Le Cadre & Philippe Delacote, 2017. "Heat or power: how to increase the use of energy wood at the lowest costs?," Working Papers - Cahiers du LEF 2017-03, Laboratoire d'Economie Forestiere, AgroParisTech-INRA, revised Mar 2017.
- Miguel Riviere & Sylvain Caurla & Philippe Delacote, 2020. "Evolving Integrated Models From Narrower Economic Tools : the Example of Forest Sector Models," Post-Print hal-02512330, HAL.
- Zakeri, Behnam & Syri, Sanna & Rinne, Samuli, 2015. "Higher renewable energy integration into the existing energy system of Finland – Is there any maximum limit?," Energy, Elsevier, vol. 92(P3), pages 244-259.
- Guo, Jinggang & Gong, Peichen, 2019. "Assessing the impacts of rising fuelwood demand on Swedish forest sector: An intertemporal optimization approach," Forest Policy and Economics, Elsevier, vol. 105(C), pages 91-98.
- Moiseyev, Alexander & Solberg, Birger & Kallio, A. Maarit I., 2014. "The impact of subsidies and carbon pricing on the wood biomass use for energy in the EU," Energy, Elsevier, vol. 76(C), pages 161-167.
- Caurla, Sylvain & Delacote, Philippe & Lecocq, Franck & Barkaoui, Ahmed, 2013. "Stimulating fuelwood consumption through public policies: An assessment of economic and resource impacts based on the French Forest Sector Model," Energy Policy, Elsevier, vol. 63(C), pages 338-347.
- Moiseyev, Alexander & Solberg, Birger & Kallio, A. Maarit I., 2013. "Wood biomass use for energy in Europe under different assumptions of coal, gas and CO2 emission prices and market conditions," Journal of Forest Economics, Elsevier, vol. 19(4), pages 432-449.
- Halder, Pradipta, 2014. "Perceptions of energy production from forest biomass among school students in Finland: Directions for the future bioenergy policies," Renewable Energy, Elsevier, vol. 68(C), pages 372-377.
- Kallio, A.M.I. & Salminen, O. & Sievänen, R., 2013. "Sequester or substitute—Consequences of increased production of wood based energy on the carbon balance in Finland," Journal of Forest Economics, Elsevier, vol. 19(4), pages 402-415.
- Latta, Gregory S. & Baker, Justin S. & Beach, Robert H. & Rose, Steven K. & McCarl, Bruce A., 2013.
"A multi-sector intertemporal optimization approach to assess the GHG implications of U.S. forest and agricultural biomass electricity expansion,"
Journal of Forest Economics, Elsevier, vol. 19(4), pages 361-383.
- Latta, Gregory S. & Baker, Justin Scott & Beach, Robert H. & Rose, Steven K. & McCarl, Bruce A., 2013. "A Multi-Sector Intertemporal Optimization Approach to Assess the GHG Implications of U.S. Forest and Agricultural Biomass Electricity Expansion," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150293, Agricultural and Applied Economics Association.
- Galik, Christopher S. & Abt, Robert C. & Latta, Gregory & Vegh, Tibor, 2015. "The environmental and economic effects of regional bioenergy policy in the southeastern U.S," Energy Policy, Elsevier, vol. 85(C), pages 335-346.
- Susanna Sironen & Laura Mononen, 2018. "Spatially Referenced Decision Analysis of Long-Term Forest Management Scenarios in Southwestern Finland," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 20(03), pages 1-46, September.
- Halaj, Daniel & Brodrechtova, Yvonne, 2018. "Marketing decision making in the forest biomass market: The case of Austria, Finland and Slovakia," Forest Policy and Economics, Elsevier, vol. 97(C), pages 201-209.
- Lauri, Pekka & Kallio, A. Maarit I. & Schneider, Uwe A., 2012. "Price of CO2 emissions and use of wood in Europe," Forest Policy and Economics, Elsevier, vol. 15(C), pages 123-131.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Miguel RIVIERE & Sylvain CAURLA, 2018. "Integrating non-timber objectives into bio-economic models of the forest sector: a review of recent innovations and current shortcomings," Working Papers of BETA 2018-26, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
- Miguel Riviere & Sylvain Caurla & Philippe Delacote, 2020. "Evolving Integrated Models From Narrower Economic Tools : the Example of Forest Sector Models," Post-Print hal-02512330, HAL.
- Kallio, A.M.I. & Salminen, O. & Sievänen, R., 2013. "Sequester or substitute—Consequences of increased production of wood based energy on the carbon balance in Finland," Journal of Forest Economics, Elsevier, vol. 19(4), pages 402-415.
- Hyukjin Oh & Kalyan Annamalai & Paul G. Goughner & Ben Thien & John M. Sweeten, 2021. "Reburning of Animal Waste Based Biomass with Coal for NO x Reduction, Part I: Feedlot Biomass (FB) and Coal:FB Blends," Energies, MDPI, vol. 14(23), pages 1-26, December.
- Loeffler, Dan & Anderson, Nathaniel, 2014. "Emissions tradeoffs associated with cofiring forest biomass with coal: A case study in Colorado, USA," Applied Energy, Elsevier, vol. 113(C), pages 67-77.
- Hyukjin Oh & Kalyan Annamalai & John M. Sweeten & Kevin Heflin, 2021. "Reburning of Animal Waste Based Biomass with Coals for NO x Reduction, Part II: Dairy Biomass (DB) and Coal–DB Blends," Energies, MDPI, vol. 14(23), pages 1-24, December.
- Toka, Agorasti & Iakovou, Eleftherios & Vlachos, Dimitrios & Tsolakis, Naoum & Grigoriadou, Anastasia-Loukia, 2014. "Managing the diffusion of biomass in the residential energy sector: An illustrative real-world case study," Applied Energy, Elsevier, vol. 129(C), pages 56-69.
- Yoonah Jeong & Jae-Sung Kim & Ye-Eun Lee & Dong-Chul Shin & Kwang-Ho Ahn & Jinhong Jung & Kyeong-Ho Kim & Min-Jong Ku & Seung-Mo Kim & Chung-Hwan Jeon & I-Tae Kim, 2023. "Investigation and Optimization of Co-Combustion Efficiency of Food Waste Biochar and Coal," Sustainability, MDPI, vol. 15(19), pages 1-12, October.
- Tae-Yong Jeong & Lkhagvadorj Sh & Jong-Ho Kim & Byoung-Hwa Lee & Chung-Hwan Jeon, 2019. "Experimental Investigation of Ash Deposit Behavior during Co-Combustion of Bituminous Coal with Wood Pellets and Empty Fruit Bunches," Energies, MDPI, vol. 12(11), pages 1-17, May.
- Peyman Alizadeh & Lope G. Tabil & Edmund Mupondwa & Xue Li & Duncan Cree, 2023. "Technoeconomic Feasibility of Bioenergy Production from Wood Sawdust," Energies, MDPI, vol. 16(4), pages 1-18, February.
- Zhang, Chuan & Zhou, Li & Chhabra, Pulkit & Garud, Sushant S. & Aditya, Kevin & Romagnoli, Alessandro & Comodi, Gabriele & Dal Magro, Fabio & Meneghetti, Antonella & Kraft, Markus, 2016. "A novel methodology for the design of waste heat recovery network in eco-industrial park using techno-economic analysis and multi-objective optimization," Applied Energy, Elsevier, vol. 184(C), pages 88-102.
- Huang, Junxuan & Liao, Yanfen & Lin, Jianhua & Dou, Changjiang & Huang, Zengxiu & Yu, Xiongwei & Yu, Zhaosheng & Chen, Chunxiang & Ma, Xiaoqian, 2024. "Numerical simulation of the co-firing of pulverized coal and eucalyptus wood in a 1000MWth opposed wall-fired boiler," Energy, Elsevier, vol. 298(C).
- Trømborg, Erik & Havskjold, Monica & Lislebø, Ole & Rørstad, Per Kristian, 2011. "Projecting demand and supply of forest biomass for heating in Norway," Energy Policy, Elsevier, vol. 39(11), pages 7049-7058.
- Dong, Leilei & Alexiadis, Alessio, 2023. "Simulation of char burnout characteristics of biomass/coal blend with a simplified single particle reaction model," Energy, Elsevier, vol. 264(C).
- Jåstad, Eirik Ogner & Mustapha, Walid Fayez & Bolkesjø, Torjus Folsland & Trømborg, Erik & Solberg, Birger, 2018. "Modelling of uncertainty in the economic development of the Norwegian forest sector," Journal of Forest Economics, Elsevier, vol. 32(C), pages 106-115.
- Yan Huang & Xiao He & Shizhen He & Yongwu Dai, 2022. "Efficiency Evaluation of a Forestry Green Economy under a Multi-Dimensional Output Benefit in China—Based on Evidential Reasoning and the Cross Efficiency Model," Sustainability, MDPI, vol. 14(21), pages 1-25, October.
- van Alphen, Klaas & van Ruijven, Jochem & Kasa, Sjur & Hekkert, Marko & Turkenburg, Wim, 2009. "The performance of the Norwegian carbon dioxide, capture and storage innovation system," Energy Policy, Elsevier, vol. 37(1), pages 43-55, January.
- Jan Hari Arti Khalsa & Diana Leistner & Nadja Weller & Leilani I. Darvell & Ben Dooley, 2016. "Torrefied Biomass Pellets—Comparing Grindability in Different Laboratory Mills," Energies, MDPI, vol. 9(10), pages 1-15, October.
- Cai, Yongtie & Tay, Kunlin & Zheng, Zhimin & Yang, Wenming & Wang, Hui & Zeng, Guang & Li, Zhiwang & Keng Boon, Siah & Subbaiah, Prabakaran, 2018. "Modeling of ash formation and deposition processes in coal and biomass fired boilers: A comprehensive review," Applied Energy, Elsevier, vol. 230(C), pages 1447-1544.
- Miguel Riviere & Sylvain Caurla, 2020. "Representations of the Forest Sector in Economic Models [Les représentations du secteur forestier dans les modèles économiques]," Post-Print hal-03088084, HAL.
More about this item
Keywords
Forest chips Logging residues Renewable energy Co-firing Biodiesel Energy policy Subsidies Finland;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:foreco:v:17:y:2011:i:2:p:110-126. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/701775/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.