IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v69y2024ipas1544612324011930.html
   My bibliography  Save this article

Public debt and welfare with machine learning

Author

Listed:
  • Zhu, Jingjing
  • Huang, Tianyuan

Abstract

The issuance of public debt affects asset returns in the market, which in turn affects macroeconomic equilibrium and wealth distribution. We use a two-period overlapping generations model with idiosyncratic investment risk to solve the general equilibrium problem of public debt and welfare, using machine learning techniques to obtain stable distributions and comparative static analysis to derive four channels that affect welfare. We find that the income channel has the largest impact on welfare from changes in public debt and the investment ratio channel has the smallest impact on welfare, where the setting of the model parameters does not affect the results of the channel decomposition.

Suggested Citation

  • Zhu, Jingjing & Huang, Tianyuan, 2024. "Public debt and welfare with machine learning," Finance Research Letters, Elsevier, vol. 69(PA).
  • Handle: RePEc:eee:finlet:v:69:y:2024:i:pa:s1544612324011930
    DOI: 10.1016/j.frl.2024.106164
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612324011930
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2024.106164?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:69:y:2024:i:pa:s1544612324011930. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.