IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v67y2024ipas1544612324007645.html
   My bibliography  Save this article

Price discovery share: An order invariant measure of price discovery

Author

Listed:
  • Shen, Shulin
  • Sultan, Syed Galib
  • Zivot, Eric

Abstract

To address the order-dependence issue in Hasbrouck’s (1995) Information Share (IS) measure, which assesses a market’s contribution to price discovery, we propose a new metric called the Price Discovery Share (PDS). The PDS is straightforward to compute, easy to interpret, order invariant, and unique. Our measure is inspired by a commonly used method in portfolio risk management that decomposes portfolio volatility into specific contributions from each asset. Through analytical methods and simulations, we demonstrate that the PDS measure offers significant advantages over both the original IS measure and the Modified Information Share (MIS) measure proposed by Lien and Shrestha (2009).

Suggested Citation

  • Shen, Shulin & Sultan, Syed Galib & Zivot, Eric, 2024. "Price discovery share: An order invariant measure of price discovery," Finance Research Letters, Elsevier, vol. 67(PA).
  • Handle: RePEc:eee:finlet:v:67:y:2024:i:pa:s1544612324007645
    DOI: 10.1016/j.frl.2024.105734
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612324007645
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2024.105734?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frank De Jong & Peter C. Schotman, 2010. "Price Discovery in Fragmented Markets," Journal of Financial Econometrics, Oxford University Press, vol. 8(1), pages 1-28, Winter.
    2. Gourieroux, C. & Laurent, J. P. & Scaillet, O., 2000. "Sensitivity analysis of Values at Risk," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 225-245, November.
    3. Beveridge, Stephen & Nelson, Charles R., 1981. "A new approach to decomposition of economic time series into permanent and transitory components with particular attention to measurement of the `business cycle'," Journal of Monetary Economics, Elsevier, vol. 7(2), pages 151-174.
    4. O. Scaillet, 2004. "Nonparametric Estimation and Sensitivity Analysis of Expected Shortfall," Mathematical Finance, Wiley Blackwell, vol. 14(1), pages 115-129, January.
    5. Hasbrouck, Joel, 1995. "One Security, Many Markets: Determining the Contributions to Price Discovery," Journal of Finance, American Finance Association, vol. 50(4), pages 1175-1199, September.
    6. de Jong, F.C.J.M. & Schotman, P.C., 2010. "Price discovery in fragmented markets," Other publications TiSEM 4650a9e7-c4cf-41cf-a771-e, Tilburg University, School of Economics and Management.
    7. Lien, Donald & Shrestha, Keshab & Lee, Lianne Mei Quin, 2022. "Analytical properties of Hasbrouck and generalized information shares," Finance Research Letters, Elsevier, vol. 49(C).
    8. Yan, Bingcheng & Zivot, Eric, 2010. "A structural analysis of price discovery measures," Journal of Financial Markets, Elsevier, vol. 13(1), pages 1-19, February.
    9. Baillie, Richard T. & Geoffrey Booth, G. & Tse, Yiuman & Zabotina, Tatyana, 2002. "Price discovery and common factor models," Journal of Financial Markets, Elsevier, vol. 5(3), pages 309-321, July.
    10. Donald Lien & Keshab Shrestha, 2014. "Price Discovery in Interrelated Markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(3), pages 203-219, March.
    11. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 821-852.
    12. Bruder, Benjamin & Roncalli, Thierry, 2012. "Managing risk exposures using the risk budgeting approach," MPRA Paper 37246, University Library of Munich, Germany.
    13. Donald Lien & Keshab Shrestha, 2009. "A new information share measure," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 29(4), pages 377-395, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Donald Lien & Zijun Wang, 2016. "Estimation of Market Information Shares: A Comparison," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(11), pages 1108-1124, November.
    2. Sebastiano Michele Zema, 2020. "Directed Acyclic Graph based Information Shares for Price Discovery," LEM Papers Series 2020/28, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    3. Wang, Jianxin & Yang, Minxian, 2015. "How well does the weighted price contribution measure price discovery?," Journal of Economic Dynamics and Control, Elsevier, vol. 55(C), pages 113-129.
    4. Donald Lien & Zijun Wang, 2019. "Quantile information share," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(1), pages 38-55, January.
    5. Joel Hasbrouck, 2021. "Price Discovery in High Resolution," Journal of Financial Econometrics, Oxford University Press, vol. 19(3), pages 395-430.
    6. Joakim Westerlund & Simon Reese & Paresh Narayan, 2017. "A Factor Analytical Approach to Price Discovery," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(3), pages 366-394, June.
    7. Karsten Schweikert, 2021. "Bootstrap Confidence Intervals and Hypothesis Testing for Market Information Shares [Price Discovery and Common Factor Models]," Journal of Financial Econometrics, Oxford University Press, vol. 19(5), pages 934-959.
    8. Mehdi Arzandeh & Julieta Frank, 2019. "Price Discovery in Agricultural Futures Markets: Should We Look beyond the Best Bid-Ask Spread?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 101(5), pages 1482-1498.
    9. Mehdi Arzandeh & Julieta Frank, 2019. "Price Discovery in Agricultural Futures Markets: Should We Look beyond the Best Bid‐Ask Spread?," American Journal of Agricultural Economics, John Wiley & Sons, vol. 101(5), pages 1482-1498, October.
    10. Zema, Sebastiano Michele, 2022. "Directed acyclic graph based information shares for price discovery," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
    11. Piccotti, Louis R. & Schreiber, Ben Z., 2020. "Information shares in a two-tier FX market," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 19-35.
    12. Arzandeh, Mehdi & Frank, Julieta, 2017. "The Information Content of the Limit Order Book," 7th Annual Canadian Agri-Food Policy Conference, January 11-13, 2017, Ottawa, ON 253251, Canadian Agricultural Economics Society.
    13. Lien, Donald, 2022. "Comparisons of Alternative Information Share Measures," Finance Research Letters, Elsevier, vol. 50(C).
    14. Hou, Yang (Greg) & Xu, Danyang & Oxley, Les & Goodell, John W., 2024. "Price discovery of climate risk and green bonds: A dynamic information leadership share approach," Finance Research Letters, Elsevier, vol. 69(PB).
    15. Donald Lien & Ziling Wang & Xiaojian Yu, 2021. "Quantile information share under Markov regime‐switching," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(4), pages 493-513, April.
    16. Santos, Francisco Luna & Garcia, Márcio Gomes Pinto & Medeiros, Marcelo Cunha, 2015. "Price Discovery in Brazilian FX Markets," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 35(1), October.
    17. Yang Hou & Steven Li & Fenghua Wen, 2021. "Time-varying information share and autoregressive loading factors: evidence from S&P 500 cash and E-mini futures markets," Review of Quantitative Finance and Accounting, Springer, vol. 57(1), pages 91-110, July.
    18. Li, Hong & Shi, Yanlin, 2021. "A new unique information share measure with applications on cross-listed Chinese banks," Journal of Banking & Finance, Elsevier, vol. 128(C).
    19. Ozturk, Sait R. & van der Wel, Michel & van Dijk, Dick, 2017. "Intraday price discovery in fragmented markets," Journal of Financial Markets, Elsevier, vol. 32(C), pages 28-48.
    20. Narayan, Seema & Smyth, Russell, 2015. "The financial econometrics of price discovery and predictability," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 380-393.

    More about this item

    Keywords

    Price discovery; Information share; Order-dependence;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:67:y:2024:i:pa:s1544612324007645. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.