IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v55y2015icp113-129.html
   My bibliography  Save this article

How well does the weighted price contribution measure price discovery?

Author

Listed:
  • Wang, Jianxin
  • Yang, Minxian

Abstract

The weighted price contribution (WPC) is a popular measure for price discovery. This paper examines the theoretical properties and empirical performance of the WPC in sequential markets. The benchmark used to judge the WPC is the information share (IS) measure based on the variation of the efficient price. We derive the asymptotic value of the WPC, which is a complex combination of the unconditional means and variances of the returns of sequential markets, under the assumption of normality. We show that the WPC correctly converges to the IS only when the returns are uncorrelated with zero means. Our theoretical predictions based on normality hold well in simulations and in empirical analyses of the overnight price discovery for the S&P 100 index and its constituent stocks. As the correlation between overnight and daytime returns increases, the WPC deviates from the IS substantially.

Suggested Citation

  • Wang, Jianxin & Yang, Minxian, 2015. "How well does the weighted price contribution measure price discovery?," Journal of Economic Dynamics and Control, Elsevier, vol. 55(C), pages 113-129.
  • Handle: RePEc:eee:dyncon:v:55:y:2015:i:c:p:113-129
    DOI: 10.1016/j.jedc.2015.04.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165188915000676
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jedc.2015.04.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Beveridge, Stephen & Nelson, Charles R., 1981. "A new approach to decomposition of economic time series into permanent and transitory components with particular attention to measurement of the `business cycle'," Journal of Monetary Economics, Elsevier, vol. 7(2), pages 151-174.
    2. Hasbrouck, Joel, 1995. "One Security, Many Markets: Determining the Contributions to Price Discovery," Journal of Finance, American Finance Association, vol. 50(4), pages 1175-1199, September.
    3. Frederic S. Mishkin, 2009. "Is Monetary Policy Effective during Financial Crises?," American Economic Review, American Economic Association, vol. 99(2), pages 573-577, May.
    4. Barclay, Michael J. & Warner, Jerold B., 1993. "Stealth trading and volatility : Which trades move prices?," Journal of Financial Economics, Elsevier, vol. 34(3), pages 281-305, December.
    5. Lehmann, Bruce N., 2002. "Some desiderata for the measurement of price discovery across markets," Journal of Financial Markets, Elsevier, vol. 5(3), pages 259-276, July.
    6. repec:bla:jfinan:v:59:y:2004:i:2:p:681-710 is not listed on IDEAS
    7. de Jong, F.C.J.M. & Schotman, P.C., 2010. "Price discovery in fragmented markets," Other publications TiSEM 4650a9e7-c4cf-41cf-a771-e, Tilburg University, School of Economics and Management.
    8. Charles Cao & Eric Ghysels & Frank Hatheway, 2000. "Price Discovery without Trading: Evidence from the Nasdaq Preopening," Journal of Finance, American Finance Association, vol. 55(3), pages 1339-1365, June.
    9. Maureen O'Hara & Chen Yao & Mao Ye, 2014. "What's Not There: Odd Lots and Market Data," Journal of Finance, American Finance Association, vol. 69(5), pages 2199-2236, October.
    10. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Clara Vega, 2003. "Micro Effects of Macro Announcements: Real-Time Price Discovery in Foreign Exchange," American Economic Review, American Economic Association, vol. 93(1), pages 38-62, March.
    11. Karolyi, G. Andrew & Lee, Kuan-Hui & van Dijk, Mathijs A., 2012. "Understanding commonality in liquidity around the world," Journal of Financial Economics, Elsevier, vol. 105(1), pages 82-112.
    12. Frank De Jong & Peter C. Schotman, 2010. "Price Discovery in Fragmented Markets," Journal of Financial Econometrics, Oxford University Press, vol. 8(1), pages 1-28, Winter.
    13. John Owens & Douglas G. Steigerwald, 2005. "Inferring Information Frequency and Quality," Journal of Financial Econometrics, Oxford University Press, vol. 3(4), pages 500-524.
    14. Yan, Bingcheng & Zivot, Eric, 2010. "A structural analysis of price discovery measures," Journal of Financial Markets, Elsevier, vol. 13(1), pages 1-19, February.
    15. Agarwal, Sumit & Liu, Chunlin & Rhee, S. Ghon, 2007. "Where does price discovery occur for stocks traded in multiple markets? Evidence from Hong Kong and London," Journal of International Money and Finance, Elsevier, vol. 26(1), pages 46-63, February.
    16. Ellul, Andrew & Shin, Hyun Song & Tonks, Ian, 2005. "Opening and Closing the Market: Evidence from the London Stock Exchange," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 40(4), pages 779-801, December.
    17. Domowitz, Ian & Hansch, Oliver & Wang, Xiaoxin, 2005. "Liquidity commonality and return co-movement," Journal of Financial Markets, Elsevier, vol. 8(4), pages 351-376, November.
    18. Barclay, Michael J. & Hendershott, Terrence, 2008. "A comparison of trading and non-trading mechanisms for price discovery," Journal of Empirical Finance, Elsevier, vol. 15(5), pages 839-849, December.
    19. Jos, van Bommel, 2011. "Measuring price discovery: The variance ratio, the R2, and the weighted price contribution," Finance Research Letters, Elsevier, vol. 8(3), pages 112-119, September.
    20. Michael J. Barclay, 2003. "Price Discovery and Trading After Hours," The Review of Financial Studies, Society for Financial Studies, vol. 16(4), pages 1041-1073.
    21. Garbade, Kenneth D & Silber, William L, 1983. "Price Movements and Price Discovery in Futures and Cash Markets," The Review of Economics and Statistics, MIT Press, vol. 65(2), pages 289-297, May.
    22. Donald Lien & Keshab Shrestha, 2009. "A new information share measure," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 29(4), pages 377-395, April.
    23. deB. Harris, Frederick H. & McInish, Thomas H. & Wood, Robert A., 2002. "Security price adjustment across exchanges: an investigation of common factor components for Dow stocks," Journal of Financial Markets, Elsevier, vol. 5(3), pages 277-308, July.
    24. Wang, Jianxin & Yang, Minxian, 2011. "Housewives of Tokyo versus the gnomes of Zurich: Measuring price discovery in sequential markets," Journal of Financial Markets, Elsevier, vol. 14(1), pages 82-108, February.
    25. Andersen, Torben G, 1996. "Return Volatility and Trading Volume: An Information Flow Interpretation of Stochastic Volatility," Journal of Finance, American Finance Association, vol. 51(1), pages 169-204, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hankil Kang & Jangkoo Kang & Soonhee Lee, 2016. "Which Traders Contribute Most to Price Discovery? Evidence from the KOSPI 200 Options Market," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 52(10), pages 2335-2347, October.
    2. Wang, Jianxin, 2014. "Overnight price discovery and the internationalization of a currency: The case of the Korean won," Pacific-Basin Finance Journal, Elsevier, vol. 29(C), pages 86-95.
    3. Hou, Yang & Li, Steven, 2017. "Time-Varying Price Discovery and Autoregressive Loading Factors: Evidence from S&P 500 Cash and E-Mini Futures Markets," MPRA Paper 81999, University Library of Munich, Germany.
    4. Chai, Edwina F.L. & Lee, Adrian D. & Wang, Jianxin, 2015. "Global information distribution in the gold OTC markets," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 206-217.
    5. Collings, David & Corbet, Shaen & Hou, Yang (Greg) & Hu, Yang & Larkin, Charles & Oxley, Les, 2022. "The effects of negative reputational contagion on international airlines: The case of the Boeing 737-MAX disasters," International Review of Financial Analysis, Elsevier, vol. 80(C).
    6. Abad, David & Pascual, Roberto, 2015. "The friction-free weighted price contribution," International Review of Economics & Finance, Elsevier, vol. 37(C), pages 226-239.
    7. Lien, Donald & Hung, Pi-Hsia & Lin, Zong-Wei, 2020. "Whose trades move stock prices? Evidence from the Taiwan Stock Exchange," International Review of Economics & Finance, Elsevier, vol. 66(C), pages 25-50.
    8. Yang Hou & Steven Li & Fenghua Wen, 2021. "Time-varying information share and autoregressive loading factors: evidence from S&P 500 cash and E-mini futures markets," Review of Quantitative Finance and Accounting, Springer, vol. 57(1), pages 91-110, July.
    9. Dimpfl, Thomas & Schweikert, Karsten, 2023. "Information shares for markets with partially overlapping trading hours," Journal of Banking & Finance, Elsevier, vol. 154(C).
    10. Muzhao Jin & Youwei Li & Jianxin Wang & Yung Chiang Yang, 2018. "Price discovery in the Chinese gold market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(10), pages 1262-1281, October.
    11. Gau, Yin-Feng & Wu, Zhen-Xing, 2017. "Macroeconomic announcements and price discovery in the foreign exchange market," Journal of International Money and Finance, Elsevier, vol. 79(C), pages 232-254.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jianxin & Yang, Minxian, 2011. "Housewives of Tokyo versus the gnomes of Zurich: Measuring price discovery in sequential markets," Journal of Financial Markets, Elsevier, vol. 14(1), pages 82-108, February.
    2. Abad, David & Pascual, Roberto, 2015. "The friction-free weighted price contribution," International Review of Economics & Finance, Elsevier, vol. 37(C), pages 226-239.
    3. Hou, Yang & Li, Steven, 2017. "Time-Varying Price Discovery and Autoregressive Loading Factors: Evidence from S&P 500 Cash and E-Mini Futures Markets," MPRA Paper 81999, University Library of Munich, Germany.
    4. Sobti, Neharika & Sehgal, Sanjay & Ilango, Balakrishnan, 2021. "How do macroeconomic news surprises affect round-the-clock price discovery of gold?," International Review of Financial Analysis, Elsevier, vol. 78(C).
    5. Lien, Donald & Hung, Pi-Hsia & Lin, Zong-Wei, 2020. "Whose trades move stock prices? Evidence from the Taiwan Stock Exchange," International Review of Economics & Finance, Elsevier, vol. 66(C), pages 25-50.
    6. Donald Lien & Zijun Wang, 2019. "Quantile information share," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(1), pages 38-55, January.
    7. Joel Hasbrouck, 2021. "Price Discovery in High Resolution," Journal of Financial Econometrics, Oxford University Press, vol. 19(3), pages 395-430.
    8. Donald Lien & Zijun Wang, 2016. "Estimation of Market Information Shares: A Comparison," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(11), pages 1108-1124, November.
    9. Wang, Jianxin, 2014. "Overnight price discovery and the internationalization of a currency: The case of the Korean won," Pacific-Basin Finance Journal, Elsevier, vol. 29(C), pages 86-95.
    10. Narayan, Seema & Smyth, Russell, 2015. "The financial econometrics of price discovery and predictability," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 380-393.
    11. Marta Khomyn, 2020. "Essays on Modern Market Structure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2020, January-A.
    12. Sebastiano Michele Zema, 2020. "Directed Acyclic Graph based Information Shares for Price Discovery," LEM Papers Series 2020/28, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    13. Zema, Sebastiano Michele, 2022. "Directed acyclic graph based information shares for price discovery," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
    14. Joseph, Kishore & Garcia, Philip & Peterson, Paul E., 2016. "Does the Boxed Beef Price Inform the Live Cattle Futures Price?," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236166, Agricultural and Applied Economics Association.
    15. Dimpfl, Thomas & Schweikert, Karsten, 2023. "Information shares for markets with partially overlapping trading hours," Journal of Banking & Finance, Elsevier, vol. 154(C).
    16. Muzhao Jin & Youwei Li & Jianxin Wang & Yung Chiang Yang, 2018. "Price discovery in the Chinese gold market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(10), pages 1262-1281, October.
    17. Karin Niehoff, 2016. "Price Discovery in Voting and Non-Voting Stocks," Schmalenbach Business Review, Springer;Schmalenbach-Gesellschaft, vol. 17(3), pages 285-307, December.
    18. Ibikunle, Gbenga, 2015. "Opening and closing price efficiency: Do financial markets need the call auction?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 34(C), pages 208-227.
    19. Chen, Wei-Peng & Chung, Huimin & Lien, Donald, 2016. "Price discovery in the S&P 500 index derivatives markets," International Review of Economics & Finance, Elsevier, vol. 45(C), pages 438-452.
    20. Li, Wei-Xuan & Chen, Clara Chia-Sheng & Nguyen, James, 2022. "Which market dominates the price discovery in currency futures? The case of the Chicago Mercantile Exchange and the Intercontinental Exchange," Global Finance Journal, Elsevier, vol. 52(C).

    More about this item

    Keywords

    Price discovery; Weighted price contribution; Information share; Information flow; Efficient price; Overnight return;
    All these keywords.

    JEL classification:

    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:55:y:2015:i:c:p:113-129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jedc .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.