IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v58y2023ipds1544612323010024.html
   My bibliography  Save this article

Stock market reaction to news: Do tense and horizon matter?

Author

Listed:
  • Brière, Marie
  • Huynh, Karen
  • Laudy, Olav
  • Pouget, Sébastien

Abstract

Using textual data extracted from a large variety of news sources (news stories, call transcripts, broker research, etc.), we build a daily aggregate news signal that takes into account the tone and tense of various news statements about a given firm. We test the informational content of this signal and examine how news about events happening in different tenses or at different horizons is incorporated into stock prices. We document large and significant market reactions around news publication. News’ tense and horizon matter a lot. News about the future drives much larger reactions than those about the present or the past. Additionally, the market reaction to future news is mainly driven by near rather than distant future news.

Suggested Citation

  • Brière, Marie & Huynh, Karen & Laudy, Olav & Pouget, Sébastien, 2023. "Stock market reaction to news: Do tense and horizon matter?," Finance Research Letters, Elsevier, vol. 58(PD).
  • Handle: RePEc:eee:finlet:v:58:y:2023:i:pd:s1544612323010024
    DOI: 10.1016/j.frl.2023.104630
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612323010024
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2023.104630?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marie Brière & Charles-Albert Lehalle & Tamara Nefedova & Amine Raboun, 2020. "Stock Market Liquidity and the Trading Costs of Asset Pricing Anomalies," Post-Print hal-04283720, HAL.
    2. Victor DeMiguel & Alberto Martín-Utrera & Francisco J Nogales & Raman Uppal, 2020. "A Transaction-Cost Perspective on the Multitude of Firm Characteristics," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2180-2222.
    3. Elizabeth Demers & Clara Vega, 2008. "Soft information in earnings announcements: news or noise?," International Finance Discussion Papers 951, Board of Governors of the Federal Reserve System (U.S.).
    4. Angela K. Davis & Jeremy M. Piger & Lisa M. Sedor, 2012. "Beyond the Numbers: Measuring the Information Content of Earnings Press Release Language," Contemporary Accounting Research, John Wiley & Sons, vol. 29(3), pages 845-868, September.
    5. Jegadeesh, Narasimhan & Wu, Di, 2013. "Word power: A new approach for content analysis," Journal of Financial Economics, Elsevier, vol. 110(3), pages 712-729.
    6. Paul C. Tetlock & Maytal Saar‐Tsechansky & Sofus Macskassy, 2008. "More Than Words: Quantifying Language to Measure Firms' Fundamentals," Journal of Finance, American Finance Association, vol. 63(3), pages 1437-1467, June.
    7. Loughran, Tim & McDonald, Bill & Pragidis, Ioannis, 2019. "Assimilation of oil news into prices," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 105-118.
    8. Zheng Tracy Ke & Bryan T. Kelly & Dacheng Xiu, 2019. "Predicting Returns With Text Data," NBER Working Papers 26186, National Bureau of Economic Research, Inc.
    9. Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
    10. Savor, Pavel & Wilson, Mungo, 2014. "Asset pricing: A tale of two days," Journal of Financial Economics, Elsevier, vol. 113(2), pages 171-201.
    11. Tim Loughran & Bill Mcdonald, 2011. "When Is a Liability Not a Liability? Textual Analysis, Dictionaries, and 10‐Ks," Journal of Finance, American Finance Association, vol. 66(1), pages 35-65, February.
    12. Jacob Boudoukh & Ronen Feldman & Shimon Kogan & Matthew Richardson, 2019. "Information, Trading, and Volatility: Evidence from Firm-Specific News," The Review of Financial Studies, Society for Financial Studies, vol. 32(3), pages 992-1033.
    13. Victor DeMiguel & Alberto Martín-Utrera & Francisco J Nogales & Raman Uppal & Andrew KarolyiEditor, 2020. "A Transaction-Cost Perspective on the Multitude of Firm Characteristics," Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2180-2222.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ardia, David & Bluteau, Keven & Boudt, Kris, 2022. "Media abnormal tone, earnings announcements, and the stock market," Journal of Financial Markets, Elsevier, vol. 61(C).
    2. Yan Luo & Linying Zhou, 2020. "Textual tone in corporate financial disclosures: a survey of the literature," International Journal of Disclosure and Governance, Palgrave Macmillan, vol. 17(2), pages 101-110, September.
    3. Aysan, Ahmet Faruk & Caporin, Massimiliano & Cepni, Oguzhan, 2024. "Not all words are equal: Sentiment and jumps in the cryptocurrency market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 91(C).
    4. Chouliaras, Andreas, 2015. "The Pessimism Factor: SEC EDGAR Form 10-K Textual Analysis and Stock Returns," MPRA Paper 65585, University Library of Munich, Germany.
    5. Özgür Arslan‐Ayaydin & James Thewissen & Wouter Torsin, 2021. "Disclosure tone management and labor unions," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 48(1-2), pages 102-147, January.
    6. D. G. DeBoskey & Yan Luo & Linying Zhou, 2019. "CEO power, board oversight, and earnings announcement tone," Review of Quantitative Finance and Accounting, Springer, vol. 52(2), pages 657-680, February.
    7. Ingrid E. Fisher & Margaret R. Garnsey & Mark E. Hughes, 2016. "Natural Language Processing in Accounting, Auditing and Finance: A Synthesis of the Literature with a Roadmap for Future Research," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 23(3), pages 157-214, July.
    8. Wanli Li & Tiantian Yan & Yue Li & Ziqiao Yan, 2023. "Earnings management and CSR report tone: Evidence from China," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 30(4), pages 1883-1902, July.
    9. Christina Bannier & Thomas Pauls & Andreas Walter, 2019. "Content analysis of business communication: introducing a German dictionary," Journal of Business Economics, Springer, vol. 89(1), pages 79-123, February.
    10. Nadine Gatzert & Dinah Heidinger, 2020. "An Empirical Analysis of Market Reactions to the First Solvency and Financial Condition Reports in the European Insurance Industry," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 87(2), pages 407-436, June.
    11. Brière, Marie & Huynh, Karen & Laudy, Olav & Pouget, Sébastien, 2023. "What do we Learn from a Machine Understanding: News Content? Stock Market Reaction to News," TSE Working Papers 23-1401, Toulouse School of Economics (TSE).
    12. Jeon, Yoontae & McCurdy, Thomas H. & Zhao, Xiaofei, 2022. "News as sources of jumps in stock returns: Evidence from 21 million news articles for 9000 companies," Journal of Financial Economics, Elsevier, vol. 145(2), pages 1-17.
    13. Kothari, Pratik & Chance, Don M. & Ferris, Stephen P., 2021. "Bragging rights: Does corporate boasting imply value creation?," Journal of Corporate Finance, Elsevier, vol. 67(C).
    14. Tim Loughran & Bill Mcdonald, 2016. "Textual Analysis in Accounting and Finance: A Survey," Journal of Accounting Research, Wiley Blackwell, vol. 54(4), pages 1187-1230, September.
    15. Charles W. Calomiris & Nida Çakır Melek & Harry Mamaysky, 2021. "Predicting the Oil Market," NBER Working Papers 29379, National Bureau of Economic Research, Inc.
    16. Javid Iqbal & Khalid Riaz, 2022. "Predicting future financial performance of banks from management’s tone in the textual disclosures," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(4), pages 2691-2721, August.
    17. Schnaubelt, Matthias & Seifert, Oleg, 2020. "Valuation ratios, surprises, uncertainty or sentiment: How does financial machine learning predict returns from earnings announcements?," FAU Discussion Papers in Economics 04/2020, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    18. Guo, Haifeng & Wang, Ying & Wang, Bo & Ge, Yuanjing, 2022. "Does prospectus AE affect IPO underpricing? A content analysis of the Chinese stock market," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 1-12.
    19. Ahmed, Yousry & Elshandidy, Tamer, 2016. "The effect of bidder conservatism on M&A decisions: Text-based evidence from US 10-K filings," International Review of Financial Analysis, Elsevier, vol. 46(C), pages 176-190.
    20. Ahmad, Khurshid & Han, JingGuang & Hutson, Elaine & Kearney, Colm & Liu, Sha, 2016. "Media-expressed negative tone and firm-level stock returns," Journal of Corporate Finance, Elsevier, vol. 37(C), pages 152-172.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:58:y:2023:i:pd:s1544612323010024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.