IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v58y2023ipas154461232300778x.html
   My bibliography  Save this article

Predicting cryptocurrency returns for real-world investments: A daily updated and accessible predictor

Author

Listed:
  • He, Mengxi
  • Shen, Lihua
  • Zhang, Yaojie
  • Zhang, Yi

Abstract

This paper uses a daily updated and accessible Crypto Fear and Greed Index (FG) to predict cryptocurrency returns. Investors can easily use return predictions from FG for real-world cryptocurrency investments. Empirical results show that FG has significant in-sample and out-of-sample predictive power at forecast horizons ranging from one day to one week. The predictive power of FG exists for individual cryptocurrencies and different market indices. From an investment perspective, we use different evaluation indicators and demonstrate that FG can bring substantial economic benefits to investors with different degrees of risk aversion.

Suggested Citation

  • He, Mengxi & Shen, Lihua & Zhang, Yaojie & Zhang, Yi, 2023. "Predicting cryptocurrency returns for real-world investments: A daily updated and accessible predictor," Finance Research Letters, Elsevier, vol. 58(PA).
  • Handle: RePEc:eee:finlet:v:58:y:2023:i:pa:s154461232300778x
    DOI: 10.1016/j.frl.2023.104406
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S154461232300778X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2023.104406?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Akyildirim, Erdinc & Aysan, Ahmet Faruk & Cepni, Oguzhan & Darendeli, S. Pinar Ceyhan, 2021. "Do investor sentiments drive cryptocurrency prices?," Economics Letters, Elsevier, vol. 206(C).
    2. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    3. Zhang, Yaojie & Ma, Feng & Wang, Yudong, 2019. "Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors?," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 97-117.
    4. Lin, Zih-Ying, 2021. "Investor attention and cryptocurrency performance," Finance Research Letters, Elsevier, vol. 40(C).
    5. He, Mengxi & Zhang, Yaojie & Wen, Danyan & Wang, Yudong, 2021. "Forecasting crude oil prices: A scaled PCA approach," Energy Economics, Elsevier, vol. 97(C).
    6. Qiu, Yue & Wang, Yifan & Xie, Tian, 2021. "Forecasting Bitcoin realized volatility by measuring the spillover effect among cryptocurrencies," Economics Letters, Elsevier, vol. 208(C).
    7. Yaojie Zhang & Mengxi He & Danyan Wen & Yudong Wang, 2022. "Forecasting Bitcoin volatility: A new insight from the threshold regression model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 633-652, April.
    8. Zhang, Yaojie & He, Mengxi & Wang, Yudong & Liang, Chao, 2023. "Global economic policy uncertainty aligned: An informative predictor for crude oil market volatility," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1318-1332.
    9. Lucey, Brian M. & Vigne, Samuel A. & Yarovaya, Larisa & Wang, Yizhi, 2022. "The cryptocurrency uncertainty index," Finance Research Letters, Elsevier, vol. 45(C).
    10. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    11. Kraaijeveld, Olivier & De Smedt, Johannes, 2020. "The predictive power of public Twitter sentiment for forecasting cryptocurrency prices," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 65(C).
    12. Bouri, Elie & Christou, Christina & Gupta, Rangan, 2022. "Forecasting returns of major cryptocurrencies: Evidence from regime-switching factor models," Finance Research Letters, Elsevier, vol. 49(C).
    13. Danyan Wen & Mengxi He & Li Liu & Yaojie Zhang, 2022. "Forecasting crude oil prices: do technical indicators need economic constraints?," Quantitative Finance, Taylor & Francis Journals, vol. 22(8), pages 1545-1559, August.
    14. He, Mengxi & Zhang, Yaojie, 2022. "Climate policy uncertainty and the stock return predictability of the oil industry," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 81(C).
    15. Clark, Ephraim & Lahiani, Amine & Mefteh-Wali, Salma, 2023. "Cryptocurrency return predictability: What is the role of the environment?," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    16. Zhang, Zhikai & He, Mengxi & Zhang, Yaojie & Wang, Yudong, 2022. "Geopolitical risk trends and crude oil price predictability," Energy, Elsevier, vol. 258(C).
    17. Wang, Jiqian & Li, Liang, 2023. "Climate risk and Chinese stock volatility forecasting: Evidence from ESG index," Finance Research Letters, Elsevier, vol. 55(PA).
    18. Ma, Feng & Cao, Jiawei, 2023. "The Chinese equity premium predictability: Evidence from a long historical data," Finance Research Letters, Elsevier, vol. 53(C).
    19. Wang, Yudong & Pan, Zhiyuan & Liu, Li & Wu, Chongfeng, 2019. "Oil price increases and the predictability of equity premium," Journal of Banking & Finance, Elsevier, vol. 102(C), pages 43-58.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengxi He & Yudong Wang & Yaojie Zhang, 2023. "The predictability of iron ore futures prices: A product‐material lead–lag effect," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(9), pages 1289-1304, September.
    2. Qingxiang Han & Mengxi He & Yaojie Zhang & Muhammad Umar, 2023. "Default return spread: A powerful predictor of crude oil price returns," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1786-1804, November.
    3. Wen, Danyan & He, Mengxi & Wang, Yudong & Zhang, Yaojie, 2024. "Forecasting crude oil market volatility: A comprehensive look at uncertainty variables," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1022-1041.
    4. Shi, Chunpei & Wei, Yu & Li, Xiafei & Liu, Yuntong, 2023. "Combination forecasts of China's oil futures returns based on multiple uncertainties and their connectedness with oil," Energy Economics, Elsevier, vol. 126(C).
    5. Wen, Danyan & Liu, Li & Wang, Yudong & Zhang, Yaojie, 2022. "Forecasting crude oil market returns: Enhanced moving average technical indicators," Resources Policy, Elsevier, vol. 76(C).
    6. Dunbar, Kwamie & Owusu-Amoako, Johnson, 2023. "Predictability of crypto returns: The impact of trading behavior," Journal of Behavioral and Experimental Finance, Elsevier, vol. 39(C).
    7. Lu, Xinjie & Ma, Feng & Wang, Tianyang & Wen, Fenghua, 2023. "International stock market volatility: A data-rich environment based on oil shocks," Journal of Economic Behavior & Organization, Elsevier, vol. 214(C), pages 184-215.
    8. He, Mengxi & Zhang, Yaojie, 2022. "Climate policy uncertainty and the stock return predictability of the oil industry," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 81(C).
    9. Xu, Yongan & Duong, Duy & Xu, Hualong, 2023. "Attention! Predicting crude oil prices from the perspective of extreme weather," Finance Research Letters, Elsevier, vol. 57(C).
    10. Zhang, Zhikai & He, Mengxi & Zhang, Yaojie & Wang, Yudong, 2022. "Geopolitical risk trends and crude oil price predictability," Energy, Elsevier, vol. 258(C).
    11. Yaojie Zhang & Qingxiang Han & Mengxi He, 2024. "Forecasting stock market returns with a lottery index: Evidence from China," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1595-1606, August.
    12. Yi, Yongsheng & He, Mengxi & Zhang, Yaojie, 2022. "Out-of-sample prediction of Bitcoin realized volatility: Do other cryptocurrencies help?," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    13. He, Mengxi & Wang, Yudong & Zeng, Qing & Zhang, Yaojie, 2023. "Forecasting aggregate stock market volatility with industry volatilities: The role of spillover index," Research in International Business and Finance, Elsevier, vol. 65(C).
    14. Liang, Chao & Xu, Yongan & Wang, Jianqiong & Yang, Mo, 2022. "Whether dimensionality reduction techniques can improve the ability of sentiment proxies to predict stock market returns," International Review of Financial Analysis, Elsevier, vol. 82(C).
    15. Bennett, Donyetta & Mekelburg, Erik & Strauss, Jack & Williams, T.H., 2024. "Unlocking the black box of sentiment and cryptocurrency: What, which, why, when and how?," Global Finance Journal, Elsevier, vol. 60(C).
    16. Huang, Yisu & Ma, Feng & Bouri, Elie & Huang, Dengshi, 2023. "A comprehensive investigation on the predictive power of economic policy uncertainty from non-U.S. countries for U.S. stock market returns," International Review of Financial Analysis, Elsevier, vol. 87(C).
    17. Zhang, Yaojie & He, Mengxi & Liao, Cunfei & Wang, Yudong, 2023. "Climate risk exposure and the cross-section of Chinese stock returns," Finance Research Letters, Elsevier, vol. 55(PB).
    18. Zhikai Zhang & Yaojie Zhang & Yudong Wang & Qunwei Wang, 2024. "The predictability of carbon futures volatility: New evidence from the spillovers of fossil energy futures returns," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(4), pages 557-584, April.
    19. Zhang, Ditian & Tang, Pan, 2023. "Forecasting European Union allowances futures: The role of technical indicators," Energy, Elsevier, vol. 270(C).
    20. Sakariyahu, Rilwan & Lawal, Rodiat & Adigun, Rasheed & Paterson, Audrey & Johan, Sofia, 2024. "One crash, too many: Global uncertainty, sentiment factors and cryptocurrency market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 94(C).

    More about this item

    Keywords

    Cryptocurrency; Return prediction; Asset allocation; Economic value; Investor sentiment;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:58:y:2023:i:pa:s154461232300778x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.