IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v55y2023ipbs1544612323003598.html
   My bibliography  Save this article

Climate risk exposure and the cross-section of Chinese stock returns

Author

Listed:
  • Zhang, Yaojie
  • He, Mengxi
  • Liao, Cunfei
  • Wang, Yudong

Abstract

This paper examines the role of climate risk exposure in the cross-sectional pricing of individual stocks in China. We find a premium of low climate risk exposure: stocks with low climate risk exposure significantly outperform those with high climate risk exposure by 0.83% to 0.90% per month in the future, on a risk-adjusted basis. Results of Fama-MacBeth regressions show that the premium of low climate risk exposure remains after controlling for well-known pricing factors. Moreover, a range of alternative settings confirms that the premium is extremely robust. Finally, climate risk exposure is a combination of pricing factors such as profitability and investment, which provides potential explanations for our results. Our study documents the importance of climate risk in cross-sectional pricing in the Chinese stock market.

Suggested Citation

  • Zhang, Yaojie & He, Mengxi & Liao, Cunfei & Wang, Yudong, 2023. "Climate risk exposure and the cross-section of Chinese stock returns," Finance Research Letters, Elsevier, vol. 55(PB).
  • Handle: RePEc:eee:finlet:v:55:y:2023:i:pb:s1544612323003598
    DOI: 10.1016/j.frl.2023.103987
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612323003598
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2023.103987?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fama, Eugene F & French, Kenneth R, 1992. "The Cross-Section of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 47(2), pages 427-465, June.
    2. Robert F Engle & Stefano Giglio & Bryan Kelly & Heebum Lee & Johannes Stroebel, 2020. "Hedging Climate Change News," The Review of Financial Studies, Society for Financial Studies, vol. 33(3), pages 1184-1216.
    3. Guo, Shuxin & Yuan, Yue & Ma, Feng, 2022. "Cross-sectional seasonalities and seasonal reversals: Evidence from China," International Review of Financial Analysis, Elsevier, vol. 82(C).
    4. Zhang, Yaojie & Ma, Feng & Wang, Yudong, 2019. "Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors?," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 97-117.
    5. Wang, Yudong & Hao, Xianfeng & Wu, Chongfeng, 2021. "Forecasting stock returns: A time-dependent weighted least squares approach," Journal of Financial Markets, Elsevier, vol. 53(C).
    6. Zhang, Yaojie & Ma, Feng & Zhu, Bo, 2019. "Intraday momentum and stock return predictability: Evidence from China," Economic Modelling, Elsevier, vol. 76(C), pages 319-329.
    7. repec:eme:cfripp:cfri-05-2022-0075 is not listed on IDEAS
    8. Zhou, Haonan & Lu, Xinjie, 2023. "Investor attention on the Russia-Ukraine conflict and stock market volatility: Evidence from China," Finance Research Letters, Elsevier, vol. 52(C).
    9. He, Mengxi & Zhang, Yaojie & Wen, Danyan & Wang, Yudong, 2021. "Forecasting crude oil prices: A scaled PCA approach," Energy Economics, Elsevier, vol. 97(C).
    10. Po‐Hsuan Hsu & Kai Li & Chi‐Yang Tsou, 2023. "The Pollution Premium," Journal of Finance, American Finance Association, vol. 78(3), pages 1343-1392, June.
    11. Jawad M Addoum & David T Ng & Ariel Ortiz-Bobea & Harrison Hong, 2020. "Temperature Shocks and Establishment Sales," The Review of Financial Studies, Society for Financial Studies, vol. 33(3), pages 1331-1366.
    12. He, Mengxi & Zhang, Yaojie, 2022. "Climate policy uncertainty and the stock return predictability of the oil industry," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 81(C).
    13. Zhang, Yaojie & Wahab, M.I.M. & Wang, Yudong, 2023. "Forecasting crude oil market volatility using variable selection and common factor," International Journal of Forecasting, Elsevier, vol. 39(1), pages 486-502.
    14. Ma, Feng & Wahab, M.I.M. & Zhang, Yaojie, 2019. "Forecasting the U.S. stock volatility: An aligned jump index from G7 stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 54(C), pages 132-146.
    15. Kewei Hou & Chen Xue & Lu Zhang, 2015. "Editor's Choice Digesting Anomalies: An Investment Approach," The Review of Financial Studies, Society for Financial Studies, vol. 28(3), pages 650-705.
    16. Amihud, Yakov, 2002. "Illiquidity and stock returns: cross-section and time-series effects," Journal of Financial Markets, Elsevier, vol. 5(1), pages 31-56, January.
    17. Fama, Eugene F. & French, Kenneth R., 2015. "A five-factor asset pricing model," Journal of Financial Economics, Elsevier, vol. 116(1), pages 1-22.
    18. Philipp Krueger & Zacharias Sautner & Laura T Starks, 2020. "The Importance of Climate Risks for Institutional Investors," The Review of Financial Studies, Society for Financial Studies, vol. 33(3), pages 1067-1111.
    19. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    20. Zeng, Qing & Ma, Feng & Lu, Xinjie & Xu, Weiju, 2022. "Policy uncertainty and carbon neutrality: Evidence from China," Finance Research Letters, Elsevier, vol. 47(PB).
    21. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    22. David E. Rapach & Jack K. Strauss & Guofu Zhou, 2013. "International Stock Return Predictability: What Is the Role of the United States?," Journal of Finance, American Finance Association, vol. 68(4), pages 1633-1662, August.
    23. Ma, Feng & Lu, Xinjie & Liu, Jia & Huang, Dengshi, 2022. "Macroeconomic attention and stock market return predictability," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 79(C).
    24. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2012. "Temperature Shocks and Economic Growth: Evidence from the Last Half Century," American Economic Journal: Macroeconomics, American Economic Association, vol. 4(3), pages 66-95, July.
    25. Jiang, Fuwei & Qi, Xinlin & Tang, Guohao, 2018. "Q-theory, mispricing, and profitability premium: Evidence from China," Journal of Banking & Finance, Elsevier, vol. 87(C), pages 135-149.
    26. Dai, Zhifeng & Zhang, Xiaotong, 2023. "Climate policy uncertainty and risks taken by the bank: Evidence from China," International Review of Financial Analysis, Elsevier, vol. 87(C).
    27. Ma, Feng & Cao, Jiawei, 2023. "The Chinese equity premium predictability: Evidence from a long historical data," Finance Research Letters, Elsevier, vol. 53(C).
    28. Chen, Zilin & Da, Zhi & Huang, Dashan & Wang, Liyao, 2023. "Presidential economic approval rating and the cross-section of stock returns," Journal of Financial Economics, Elsevier, vol. 147(1), pages 106-131.
    29. Hong, Harrison & Li, Frank Weikai & Xu, Jiangmin, 2019. "Climate risks and market efficiency," Journal of Econometrics, Elsevier, vol. 208(1), pages 265-281.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaojie Zhang & Qingxiang Han & Mengxi He, 2024. "Forecasting stock market returns with a lottery index: Evidence from China," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1595-1606, August.
    2. Zhang, Yaojie & Song, Bingheng & He, Mengxi & Wang, Yudong, 2024. "Abnormal temperature and the cross-section of stock returns in China," International Review of Financial Analysis, Elsevier, vol. 94(C).
    3. Zhang, Yaojie & Zhang, Yuxuan & Ren, Xinrui & Jin, Meichen, 2024. "Geopolitical risk exposure and stock returns: Evidence from China," Finance Research Letters, Elsevier, vol. 64(C).
    4. Liu, Hao & Lin, Chuyin, 2023. "Climate change news risk and corporate bond returns in China," Finance Research Letters, Elsevier, vol. 58(PC).
    5. Liu, Peng & Chen, Yaru & Mu, Yan, 2024. "The impact of climate risk aversion on agribusiness share price volatility," Finance Research Letters, Elsevier, vol. 61(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yaojie & Song, Bingheng & He, Mengxi & Wang, Yudong, 2024. "Abnormal temperature and the cross-section of stock returns in China," International Review of Financial Analysis, Elsevier, vol. 94(C).
    2. Venturini, Alessio, 2022. "Climate change, risk factors and stock returns: A review of the literature," International Review of Financial Analysis, Elsevier, vol. 79(C).
    3. Faccini, Renato & Matin, Rastin & Skiadopoulos, George, 2023. "Dissecting climate risks: Are they reflected in stock prices?," Journal of Banking & Finance, Elsevier, vol. 155(C).
    4. Tristan Jourde & Arthur Stalla-Bourdillon, 2024. "PEnvironmental Preferences and Sector Valuations," Working papers 964, Banque de France.
    5. Ho, Thang, 2022. "Climate change news sensitivity and mutual fund performance," International Review of Financial Analysis, Elsevier, vol. 83(C).
    6. Zhong, Angel, 2018. "Idiosyncratic volatility in the Australian equity market," Pacific-Basin Finance Journal, Elsevier, vol. 50(C), pages 105-125.
    7. Lin, Chaonan & Chen, Hong-Yi & Ko, Kuan-Cheng & Yang, Nien-Tzu, 2021. "Time-dependent lottery preference and the cross-section of stock returns," Journal of Empirical Finance, Elsevier, vol. 64(C), pages 272-294.
    8. Pástor, Ľuboš & Stambaugh, Robert F. & Taylor, Lucian A., 2022. "Dissecting green returns," Journal of Financial Economics, Elsevier, vol. 146(2), pages 403-424.
    9. Xin Chen & Wei He & Libin Tao & Jianfeng Yu, 2023. "Attention and Underreaction-Related Anomalies," Management Science, INFORMS, vol. 69(1), pages 636-659, January.
    10. Reboredo, Juan C. & Ugolini, Andrea, 2022. "Climate transition risk, profitability and stock prices," International Review of Financial Analysis, Elsevier, vol. 83(C).
    11. Hollstein, Fabian & Prokopczuk, Marcel, 2022. "Testing Factor Models in the Cross-Section," Journal of Banking & Finance, Elsevier, vol. 145(C).
    12. David Ardia & Keven Bluteau & Kris Boudt & Koen Inghelbrecht, 2020. "Climate change concerns and the performance of green versus brown stocks," Working Paper Research 395, National Bank of Belgium.
    13. Liu, Jianan & Stambaugh, Robert F. & Yuan, Yu, 2019. "Size and value in China," Journal of Financial Economics, Elsevier, vol. 134(1), pages 48-69.
    14. David Hirshleifer & Po-Hsuan Hsu & Dongmei Li, 2018. "Innovative Originality, Profitability, and Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 31(7), pages 2553-2605.
    15. Kang, Moonsoo & Khaksari, S. & Nam, Kiseok, 2018. "Corporate investment, short-term return reversal, and stock liquidity," Journal of Financial Markets, Elsevier, vol. 39(C), pages 68-83.
    16. Bali, Turan G. & Brown, Stephen J. & Tang, Yi, 2017. "Is economic uncertainty priced in the cross-section of stock returns?," Journal of Financial Economics, Elsevier, vol. 126(3), pages 471-489.
    17. Wang, Zijun, 2021. "The high volume return premium and economic fundamentals," Journal of Financial Economics, Elsevier, vol. 140(1), pages 325-345.
    18. Du, Qianqian & Su, Wanxuan & Liang, Dawei & Wang, Luying, 2023. "How does green preference impact sustainability-based investment strategy? Evidence from the Chinese stock market," Economic Modelling, Elsevier, vol. 124(C).
    19. Zhang, Yaojie & Zhang, Yuxuan & Ren, Xinrui & Jin, Meichen, 2024. "Geopolitical risk exposure and stock returns: Evidence from China," Finance Research Letters, Elsevier, vol. 64(C).
    20. Long, Huaigang & Zaremba, Adam & Zhou, Wenyu & Bouri, Elie, 2022. "Macroeconomics matter: Leading economic indicators and the cross-section of global stock returns," Journal of Financial Markets, Elsevier, vol. 61(C).

    More about this item

    Keywords

    Climate risk; Cross-section of stock returns; Chinese stock market; Return predictability; Fama-MacBeth regressions;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:55:y:2023:i:pb:s1544612323003598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.