IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v55y2023ipbs1544612323003367.html
   My bibliography  Save this article

Portfolio optimization: A multi-period model with dynamic risk preference and minimum lots of transaction

Author

Listed:
  • Liu, Yiying
  • Zhou, Yongbin
  • Niu, Juanjuan

Abstract

Sufficient description of stock returns is essential to generate an efficient model of portfolio optimization. Security returns are considered to be random variables where there exist sufficient data of historical returns. Nonetheless, uncertain variables may be applied to increase the effectiveness of security returns. The following research entails an optimization objective problem focusing on minimum lots of transaction in uncertain environments of dynamic trading. Also, the changing risk preference of the investor over the horizon of investment has been factored in the model. An average- Value at Risk (VaR) framework has been used to maximize wealth creation using genetic algorithms.

Suggested Citation

  • Liu, Yiying & Zhou, Yongbin & Niu, Juanjuan, 2023. "Portfolio optimization: A multi-period model with dynamic risk preference and minimum lots of transaction," Finance Research Letters, Elsevier, vol. 55(PB).
  • Handle: RePEc:eee:finlet:v:55:y:2023:i:pb:s1544612323003367
    DOI: 10.1016/j.frl.2023.103964
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612323003367
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2023.103964?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. W. Brent Lindquist & Svetlozar T. Rachev & Yuan Hu & Abootaleb Shirvani, 2022. "Dynamic Portfolio Optimization: Beyond MPT," Dynamic Modeling and Econometrics in Economics and Finance, in: Advanced REIT Portfolio Optimization, chapter 0, pages 93-112, Springer.
    2. Hiroshi Konno & Annista Wijayanayake, 2001. "Minimal Cost Index Tracking Under Nonlinear Transaction Costs And Minimal Transaction Unit Constraints," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 4(06), pages 939-957.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Strub, O. & Baumann, P., 2018. "Optimal construction and rebalancing of index-tracking portfolios," European Journal of Operational Research, Elsevier, vol. 264(1), pages 370-387.
    2. Björn Fastrich & Peter Winker, 2012. "Robust portfolio optimization with a hybrid heuristic algorithm," Computational Management Science, Springer, vol. 9(1), pages 63-88, February.
    3. Gnägi, M. & Strub, O., 2020. "Tracking and outperforming large stock-market indices," Omega, Elsevier, vol. 90(C).
    4. Sant’Anna, Leonardo Riegel & Righi, Marcelo Brutti & Müller, Fernanda Maria & Guedes, Pablo Cristini, 2022. "Risk measure index tracking model," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 361-383.
    5. Chen, Qi-an & Hu, Qingyu & Yang, Hu & Qi, Kai, 2022. "A kind of new time-weighted nonnegative lasso index-tracking model and its application," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    6. Li, Helong & Huang, Qin & Wu, Baiyi, 2021. "Improving the naive diversification: An enhanced indexation approach," Finance Research Letters, Elsevier, vol. 39(C).
    7. Sant’Anna, Leonardo Riegel & Caldeira, João Frois & Filomena, Tiago Pascoal, 2020. "Lasso-based index tracking and statistical arbitrage long-short strategies," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    8. Guastaroba, G. & Speranza, M.G., 2012. "Kernel Search: An application to the index tracking problem," European Journal of Operational Research, Elsevier, vol. 217(1), pages 54-68.
    9. Leonardo Riegel Sant’Anna & Tiago Pascoal Filomena & Pablo Cristini Guedes & Denis Borenstein, 2017. "Index tracking with controlled number of assets using a hybrid heuristic combining genetic algorithm and non-linear programming," Annals of Operations Research, Springer, vol. 258(2), pages 849-867, November.
    10. Julio Cezar Soares Silva & Adiel Teixeira de Almeida Filho, 2023. "A systematic literature review on solution approaches for the index tracking problem in the last decade," Papers 2306.01660, arXiv.org, revised Jun 2023.
    11. Mahdi Moeini, 2022. "Solving the index tracking problem: a continuous optimization approach," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(2), pages 807-835, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:55:y:2023:i:pb:s1544612323003367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.