IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v54y2023ics1544612323000867.html
   My bibliography  Save this article

Introducing the Cryptocurrency VIX: CVIX✰

Author

Listed:
  • Bonaparte, Yosef

Abstract

We present a theoretical and empirical methodology reflects the Cryptocurrency version of VIX capturing the future 30-day forward Crypto risk. Our framework is built on the asymptotic distribution theory that utilizes the idiosyncratic and systematic Crypto risk and is not based on the option implied volatility model, that developed by the CBOE for the S&P Volatility Index VIX. For back testing, our CVIX projected with accuracy of over 89% the 30 days forward Crypto realized volatility. Our framework is superior to the option based VIX due to the fact that the option market does not represents all the stock market.

Suggested Citation

  • Bonaparte, Yosef, 2023. "Introducing the Cryptocurrency VIX: CVIX✰," Finance Research Letters, Elsevier, vol. 54(C).
  • Handle: RePEc:eee:finlet:v:54:y:2023:i:c:s1544612323000867
    DOI: 10.1016/j.frl.2023.103712
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612323000867
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2023.103712?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. v{S}tefan Ly'ocsa & Tom'av{s} Pl'ihal, 2022. "Russia's Ruble during the onset of the Russian invasion of Ukraine in early 2022: The role of implied volatility and attention," Papers 2205.09179, arXiv.org.
    2. Bonaparte, Yosef, 2022. "Time horizon and cryptocurrency ownership: Is crypto not speculative?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 79(C).
    3. Wang, Lu & Zhao, Chenchen & Liang, Chao & Jiu, Song, 2022. "Predicting the volatility of China's new energy stock market: Deep insight from the realized EGARCH-MIDAS model," Finance Research Letters, Elsevier, vol. 48(C).
    4. Tauchen, George, 1985. "Diagnostic testing and evaluation of maximum likelihood models," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 415-443.
    5. Bonaparte, Yosef & Chatrath, Arjun & Christie-David, Rohan, 2023. "S&P volatility, VIX, and asymptotic volatility estimates," Finance Research Letters, Elsevier, vol. 51(C).
    6. Liu, Zhichao & Liu, Jing & Zeng, Qing & Wu, Lan, 2022. "VIX and stock market volatility predictability: A new approach," Finance Research Letters, Elsevier, vol. 48(C).
    7. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    8. Lyócsa, Štefan & Plíhal, Tomáš, 2022. "Russia’s ruble during the onset of the Russian invasion of Ukraine in early 2022: The role of implied volatility and attention," Finance Research Letters, Elsevier, vol. 48(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bonaparte, Yosef & Chatrath, Arjun & Christie-David, Rohan, 2023. "S&P volatility, VIX, and asymptotic volatility estimates," Finance Research Letters, Elsevier, vol. 51(C).
    2. Piotr Fiszeder & Marta Ma³ecka, 2022. "Forecasting volatility during the outbreak of Russian invasion of Ukraine: application to commodities, stock indices, currencies, and cryptocurrencies," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 17(4), pages 939-967, December.
    3. Wang, Yi-Ran & Ma, Chao-Qun & Ren, Yi-Shuai, 2022. "A model for CBDC audits based on blockchain technology: Learning from the DCEP," Research in International Business and Finance, Elsevier, vol. 63(C).
    4. Pandey, Dharen Kumar & Lucey, Brian M. & Kumar, Satish, 2023. "Border disputes, conflicts, war, and financial markets research: A systematic review," Research in International Business and Finance, Elsevier, vol. 65(C).
    5. Fang, Yi & Shao, Zhiquan, 2022. "The Russia-Ukraine conflict and volatility risk of commodity markets," Finance Research Letters, Elsevier, vol. 50(C).
    6. Umar, Muhammad & Riaz, Yasir & Yousaf, Imran, 2022. "Impact of Russian-Ukraine war on clean energy, conventional energy, and metal markets: Evidence from event study approach," Resources Policy, Elsevier, vol. 79(C).
    7. Kumar, Pawan & Singh, Vipul Kumar, 2022. "Does crude oil fire the emerging markets currencies contagion spillover? A systemic perspective," Energy Economics, Elsevier, vol. 116(C).
    8. Halousková, Martina & Stašek, Daniel & Horváth, Matúš, 2022. "The role of investor attention in global asset price variation during the invasion of Ukraine," Finance Research Letters, Elsevier, vol. 50(C).
    9. Chortane, Sana Gaied & Pandey, Dharen Kumar, 2022. "Does the Russia-Ukraine war lead to currency asymmetries? A US dollar tale," The Journal of Economic Asymmetries, Elsevier, vol. 26(C).
    10. Xilong Chen & Eric Ghysels, 2011. "News--Good or Bad--and Its Impact on Volatility Predictions over Multiple Horizons," The Review of Financial Studies, Society for Financial Studies, vol. 24(1), pages 46-81, October.
    11. Andrés Langebaek R. & Diego Vásquez E., 2007. "Determinantes de la actividad innovadora en la industria manufacturera colombiana," Borradores de Economia 433, Banco de la Republica de Colombia.
    12. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2016. "Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution," International Journal of Forecasting, Elsevier, vol. 32(2), pages 437-457.
    13. Cavit Pakel & Neil Shephard & Kevin Sheppard, 2009. "Nuisance parameters, composite likelihoods and a panel of GARCH models," OFRC Working Papers Series 2009fe03, Oxford Financial Research Centre.
    14. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Decoupling the short- and long-term behavior of stochastic volatility," CREATES Research Papers 2017-26, Department of Economics and Business Economics, Aarhus University.
    15. Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016. "Do We Need High Frequency Data to Forecast Variances?," Annals of Economics and Statistics, GENES, issue 123-124, pages 135-174.
    16. Lu Wang & Feng Ma & Guoshan Liu, 2020. "Forecasting stock volatility in the presence of extreme shocks: Short‐term and long‐term effects," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 797-810, August.
    17. Jonathan J. Reeves & Xuan Xie, 2014. "Forecasting stock return volatility at the quarterly frequency: an evaluation of time series approaches," Applied Financial Economics, Taylor & Francis Journals, vol. 24(5), pages 347-356, March.
    18. Sucarrat, Genaro, 2009. "Forecast Evaluation of Explanatory Models of Financial Variability," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-33.
    19. Andrea Bucci, 2020. "Realized Volatility Forecasting with Neural Networks," Journal of Financial Econometrics, Oxford University Press, vol. 18(3), pages 502-531.
    20. Heejoon Han & Myung D. Park, 2013. "Comparison of Realized Measure and Implied Volatility in Forecasting Volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 522-533, September.

    More about this item

    Keywords

    Crypto currency; Bitcoin; Asymptotic theory; Cryptocurrency VIX; CVIX;
    All these keywords.

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:54:y:2023:i:c:s1544612323000867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.