IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v50y2022ics1544612322004974.html
   My bibliography  Save this article

Does carbon price volatility affect European stock market sectors? A connectedness network analysis

Author

Listed:
  • Aslan, Aydin
  • Posch, Peter N.

Abstract

We investigate how the volatility of carbon emission allowance (EUA) prices affects European stock market sectors. We employ a connectedness network analysis on prices of EUA futures and FTSE stock market sector indices and find that the EUA is mostly a net receiver of volatility connectedness and significantly receives volatility across most sectors during the recent European energy crisis.

Suggested Citation

  • Aslan, Aydin & Posch, Peter N., 2022. "Does carbon price volatility affect European stock market sectors? A connectedness network analysis," Finance Research Letters, Elsevier, vol. 50(C).
  • Handle: RePEc:eee:finlet:v:50:y:2022:i:c:s1544612322004974
    DOI: 10.1016/j.frl.2022.103318
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612322004974
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2022.103318?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    2. Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
    3. Francis X. Diebold & Kamil Yilmaz, 2009. "Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets," Economic Journal, Royal Economic Society, vol. 119(534), pages 158-171, January.
    4. Garman, Mark B & Klass, Michael J, 1980. "On the Estimation of Security Price Volatilities from Historical Data," The Journal of Business, University of Chicago Press, vol. 53(1), pages 67-78, January.
    5. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    6. Francis X. Diebold & Kamil Yilmaz, 2016. "Trans-Atlantic Equity Volatility Connectedness: U.S. and European Financial Institutions, 2004–2014," Journal of Financial Econometrics, Oxford University Press, vol. 14(1), pages 81-127.
    7. Reboredo, Juan C., 2014. "Volatility spillovers between the oil market and the European Union carbon emission market," Economic Modelling, Elsevier, vol. 36(C), pages 229-234.
    8. Hintermayer, Martin, 2020. "A Carbon Price Floor in the Reformed EU ETS: Design Matters!," VfS Annual Conference 2020 (Virtual Conference): Gender Economics 224576, Verein für Socialpolitik / German Economic Association.
    9. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    10. Hintermayer, Martin, 2020. "A carbon price floor in the reformed EU ETS: Design matters!," Energy Policy, Elsevier, vol. 147(C).
    11. Hintermayer, Martin, 2020. "A Carbon Price Floor in the Reformed EU ETS: Design matters!," EWI Working Papers 2020-3, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Suleman, Muhammad Tahir & Rehman, Mobeen Ur & Sheikh, Umaid A. & Kang, Sang Hoon, 2023. "Dynamic time-frequency connectedness between European emissions trading system and sustainability markets," Energy Economics, Elsevier, vol. 123(C).
    2. Chao Zhang & Yihang Zhao & Huiru Zhao, 2022. "A Novel Hybrid Price Prediction Model for Multimodal Carbon Emission Trading Market Based on CEEMDAN Algorithm and Window-Based XGBoost Approach," Mathematics, MDPI, vol. 10(21), pages 1-16, November.
    3. Zhao, Lu-Tao & Liu, Hai-Yi & Chen, Xue-Hui, 2024. "How does carbon market interact with energy and sectoral stocks? Evidence from risk spillover and wavelet coherence," Journal of Commodity Markets, Elsevier, vol. 33(C).
    4. Pakrooh, Parisa & Manera, Matteo, 2024. "Causality, Connectedness, and Volatility Pass-through among Energy-Metal-Stock-Carbon Markets: New Evidence from the EU," FEEM Working Papers 344790, Fondazione Eni Enrico Mattei (FEEM).
    5. Parisa Pakrooh & Matteo Manera, 2024. "Causality, Connectedness, and Volatility Pass-through among Energy-Metal-Stock-Carbon Markets: New Evidence from the EU," Working Papers 2024.22, Fondazione Eni Enrico Mattei.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Lin & Kordzakhia, Nino & Trück, Stefan, 2020. "Volatility spillovers in Australian electricity markets," Energy Economics, Elsevier, vol. 90(C).
    2. Aslanidis, Nektarios & Bariviera, Aurelio F. & Perez-Laborda, Alejandro, 2021. "Are cryptocurrencies becoming more interconnected?," Economics Letters, Elsevier, vol. 199(C).
    3. Okorie, David Iheke & Lin, Boqiang, 2022. "Givers never lack: Nigerian oil & gas asymmetric network analyses," Energy Economics, Elsevier, vol. 108(C).
    4. Hsu, Chih-Hsiang & Lee, Hsiu-Chuan & Lien, Donald, 2020. "Stock market uncertainty, volatility connectedness of financial institutions, and stock-bond return correlations," International Review of Economics & Finance, Elsevier, vol. 70(C), pages 600-621.
    5. Papież, Monika & Rubaszek, Michał & Szafranek, Karol & Śmiech, Sławomir, 2022. "Are European natural gas markets connected? A time-varying spillovers analysis," Resources Policy, Elsevier, vol. 79(C).
    6. Abdollahi, Hooman & Fjesme, Sturla L. & Sirnes, Espen, 2024. "Measuring market volatility connectedness to media sentiment," The North American Journal of Economics and Finance, Elsevier, vol. 71(C).
    7. Wang, Gang-Jin & Xie, Chi & Zhao, Longfeng & Jiang, Zhi-Qiang, 2018. "Volatility connectedness in the Chinese banking system: Do state-owned commercial banks contribute more?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 57(C), pages 205-230.
    8. Dai, Xingyu & Xiao, Ling & Wang, Qunwei & Dhesi, Gurjeet, 2021. "Multiscale interplay of higher-order moments between the carbon and energy markets during Phase III of the EU ETS," Energy Policy, Elsevier, vol. 156(C).
    9. Mohamed Beraich & Karim Amzile & Jaouad Laamire & Omar Zirari & Mohamed Amine Fadali, 2022. "Volatility Spillover Effects of the US, European and Chinese Financial Markets in the Context of the Russia–Ukraine Conflict," IJFS, MDPI, vol. 10(4), pages 1-18, October.
    10. Lovcha, Yuliya & Perez-Laborda, Alejandro, 2020. "Dynamic frequency connectedness between oil and natural gas volatilities," Economic Modelling, Elsevier, vol. 84(C), pages 181-189.
    11. Li, Xingyi & Gan, Kai & Zhou, Qi, 2023. "Dynamic volatility connectedness among cryptocurrencies and China's financial assets in standard times and during the COVID-19 pandemic," Finance Research Letters, Elsevier, vol. 51(C).
    12. Shang, Jin & Hamori, Shigeyuki, 2021. "Do crude oil prices and the sentiment index influence foreign exchange rates differently in oil-importing and oil-exporting countries? A dynamic connectedness analysis," Resources Policy, Elsevier, vol. 74(C).
    13. Mensi, Walid & Al-Yahyaee, Khamis Hamed & Wanas Al-Jarrah, Idries Mohammad & Vo, Xuan Vinh & Kang, Sang Hoon, 2021. "Does volatility connectedness across major cryptocurrencies behave the same at different frequencies? A portfolio risk analysis," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 96-113.
    14. Lovcha, Yuliya & Perez-Laborda, Alejandro, 2022. "Long-memory and volatility spillovers across petroleum futures," Energy, Elsevier, vol. 243(C).
    15. Sikorska-Pastuszka, Magdalena & Papież, Monika, 2023. "Dynamic volatility connectedness in the European electricity market," Energy Economics, Elsevier, vol. 127(PA).
    16. Mert Demirer & Umut Gokcen & Kamil Yilmaz, 2018. "Financial Sector Volatility Connectedness and Equity Returns," Koç University-TUSIAD Economic Research Forum Working Papers 1803, Koc University-TUSIAD Economic Research Forum.
    17. Akbulut Nesrin & Ari Yakup, 2023. "TVP-VAR Frequency Connectedness Between the Foreign Exchange Rates of Non-Euro Area Member Countries," Folia Oeconomica Stetinensia, Sciendo, vol. 23(2), pages 1-23, December.
    18. Cao, Li & Jiang, Junhua & Piljak, Vanja, 2023. "Did mega-regional trade agreements reshuffle the financial influence of the US, China, and Japan in ASEAN? Evidence from the volatility-spillover effects," Research in International Business and Finance, Elsevier, vol. 65(C).
    19. Yi, Shuyue & Xu, Zishuang & Wang, Gang-Jin, 2018. "Volatility connectedness in the cryptocurrency market: Is Bitcoin a dominant cryptocurrency?," International Review of Financial Analysis, Elsevier, vol. 60(C), pages 98-114.
    20. Arı, Yakup, 2022. "USD/TRY and foreign banks in Turkey: Evidence by TVP-VAR," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 67, pages 5-26.

    More about this item

    Keywords

    EU ETS; EUA; Connectedness network; Volatility spillover;
    All these keywords.

    JEL classification:

    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:50:y:2022:i:c:s1544612322004974. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.