IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v37y2020ics1544612319305367.html
   My bibliography  Save this article

Can the intermediary capital risk predict foreign exchange rates?

Author

Listed:
  • Yin, Libo

Abstract

The intermediary capital risk (ICR) is recently perceived as an important indicator of economic activities and risk premiums. In this paper, we provide individual time-series predictability of ICR for exchange rates of twelve major currencies against US dollar, in both in-sample and out-of-sample settings. This predictive pattern is robust when controlling for macroeconomic variables. Further analysis shows that a simple linear regression is sufficient to capture the predictive performance. Our results imply that the ICR factor is a useful predictor for exchange rates.

Suggested Citation

  • Yin, Libo, 2020. "Can the intermediary capital risk predict foreign exchange rates?," Finance Research Letters, Elsevier, vol. 37(C).
  • Handle: RePEc:eee:finlet:v:37:y:2020:i:c:s1544612319305367
    DOI: 10.1016/j.frl.2019.101349
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612319305367
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2019.101349?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Markus K. Brunnermeier & Yuliy Sannikov, 2014. "A Macroeconomic Model with a Financial Sector," American Economic Review, American Economic Association, vol. 104(2), pages 379-421, February.
    2. Lucio Sarno & Giorgio Valente, 2009. "Exchange Rates and Fundamentals: Footloose or Evolving Relationship?," Journal of the European Economic Association, MIT Press, vol. 7(4), pages 786-830, June.
    3. Zhiguo He & Arvind Krishnamurthy, 2013. "Intermediary Asset Pricing," American Economic Review, American Economic Association, vol. 103(2), pages 732-770, April.
    4. Charles Engel & Kenneth D. West, 2005. "Exchange Rates and Fundamentals," Journal of Political Economy, University of Chicago Press, vol. 113(3), pages 485-517, June.
    5. Roubaud, David & Arouri, Mohamed, 2018. "Oil prices, exchange rates and stock markets under uncertainty and regime-switching," Finance Research Letters, Elsevier, vol. 27(C), pages 28-33.
    6. Barbara Rossi, 2013. "Exchange Rate Predictability," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1063-1119, December.
    7. Domenico Ferraro & Kenneth S. Rogoff & Barbara Rossi, 2011. "Can oil prices forecast exchange rates?," Working Papers 11-34, Federal Reserve Bank of Philadelphia.
    8. Kyle Jurado & Sydney C. Ludvigson & Serena Ng, 2015. "Measuring Uncertainty," American Economic Review, American Economic Association, vol. 105(3), pages 1177-1216, March.
    9. Gino Cenedese & Richard Payne & Lucio Sarno & Giorgio Valente, 2016. "What Do Stock Markets Tell Us about Exchange Rates?," Review of Finance, European Finance Association, vol. 20(3), pages 1045-1080.
    10. Rime, Dagfinn & Sarno, Lucio & Sojli, Elvira, 2010. "Exchange rate forecasting, order flow and macroeconomic information," Journal of International Economics, Elsevier, vol. 80(1), pages 72-88, January.
    11. Caporale, Guglielmo Maria & Spagnolo, Fabio & Spagnolo, Nicola, 2017. "Macro news and exchange rates in the BRICS," Finance Research Letters, Elsevier, vol. 21(C), pages 140-143.
    12. He, Zhiguo & Kelly, Bryan & Manela, Asaf, 2017. "Intermediary asset pricing: New evidence from many asset classes," Journal of Financial Economics, Elsevier, vol. 126(1), pages 1-35.
    13. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    14. Frijns, Bart & Huynh, Thanh D. & Tourani-Rad, Alireza & Westerholm, P. Joakim, 2018. "Institutional trading and asset pricing," Journal of Banking & Finance, Elsevier, vol. 89(C), pages 59-77.
    15. Tobias Adrian & Erkko Etula & Tyler Muir, 2014. "Financial Intermediaries and the Cross-Section of Asset Returns," Journal of Finance, American Finance Association, vol. 69(6), pages 2557-2596, December.
    16. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
    17. Meese, Richard A. & Rogoff, Kenneth, 1983. "Empirical exchange rate models of the seventies : Do they fit out of sample?," Journal of International Economics, Elsevier, vol. 14(1-2), pages 3-24, February.
    18. Christina Christou & Rangan Gupta & Christis Hassapis & Tahir Suleman, 2018. "The role of economic uncertainty in forecasting exchange rate returns and realized volatility: Evidence from quantile predictive regressions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(7), pages 705-719, November.
    19. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    20. Pasquale Della Corte & Steven J. Riddiough & Lucio Sarno, 2016. "Currency Premia and Global Imbalances," Review of Financial Studies, Society for Financial Studies, vol. 29(8), pages 2161-2193.
    21. Husted, Lucas & Rogers, John & Sun, Bo, 2018. "Uncertainty, currency excess returns, and risk reversals," Journal of International Money and Finance, Elsevier, vol. 88(C), pages 228-241.
    22. Lucio Sarno & Maik Schmeling, 2014. "Which Fundamentals Drive Exchange Rates? A Cross‐Sectional Perspective," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 46(2-3), pages 267-292, March.
    23. Ferraro, Domenico & Rogoff, Kenneth & Rossi, Barbara, 2015. "Can oil prices forecast exchange rates? An empirical analysis of the relationship between commodity prices and exchange rates," Journal of International Money and Finance, Elsevier, vol. 54(C), pages 116-141.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Yiye & Han, Liyan & Wu, You, 2022. "Can skewness predict CNY-CNH spread?," Finance Research Letters, Elsevier, vol. 46(PB).
    2. Jiang, Xue & Li, Sai-Ping & Mai, Yong & Tian, Tao, 2022. "Study of multinational currency co-movement and exchange rate stability base on network game," Finance Research Letters, Elsevier, vol. 47(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stijn Claessens & M Ayhan Kose, 2018. "Frontiers of macrofinancial linkages," BIS Papers, Bank for International Settlements, number 95.
    2. Liu, Li & Tan, Siming & Wang, Yudong, 2020. "Can commodity prices forecast exchange rates?," Energy Economics, Elsevier, vol. 87(C).
    3. Stijn Claessens & M Ayhan Kose, 2017. "Asset prices and macroeconomic outcomes: a survey," BIS Working Papers 676, Bank for International Settlements.
    4. Yin, Libo & Su, Zhi & Lu, Man, 2022. "Is oil risk important for commodity-related currency returns?," Research in International Business and Finance, Elsevier, vol. 60(C).
    5. Panopoulou, Ekaterini & Souropanis, Ioannis, 2019. "The role of technical indicators in exchange rate forecasting," Journal of Empirical Finance, Elsevier, vol. 53(C), pages 197-221.
    6. Han, Liyan & Wan, Li & Xu, Yang, 2020. "Can the Baltic Dry Index predict foreign exchange rates?," Finance Research Letters, Elsevier, vol. 32(C).
    7. Mr. Tobias Adrian & Peichu Xie, 2020. "The Non-U.S. Bank Demand for U.S. Dollar Assets," IMF Working Papers 2020/101, International Monetary Fund.
    8. Libo Yin, 2022. "The role of intermediary capital risk in predicting oil volatility," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 401-416, January.
    9. Feng He & Libo Yin, 2021. "Shocks to the equity capital ratio of financial intermediaries and the predictability of stock return volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(6), pages 945-962, September.
    10. Ahmed, Shamim & Liu, Xiaoquan & Valente, Giorgio, 2016. "Can currency-based risk factors help forecast exchange rates?," International Journal of Forecasting, Elsevier, vol. 32(1), pages 75-97.
    11. Afees A. Salisu & Juncal Cuñado & Kazeem Isah & Rangan Gupta, 2021. "Stock markets and exchange rate behavior of the BRICS," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1581-1595, December.
    12. Wang, Yudong & Liu, Li & Ma, Feng & Diao, Xundi, 2018. "Momentum of return predictability," Journal of Empirical Finance, Elsevier, vol. 45(C), pages 141-156.
    13. Feng, Wenjun & Zhang, Zhengjun, 2023. "Currency exchange rate predictability: The new power of Bitcoin prices," Journal of International Money and Finance, Elsevier, vol. 132(C).
    14. Libo Yin & Jing Nie, 2021. "Intermediary asset pricing in currency carry trade returns," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(8), pages 1241-1267, August.
    15. Antonios K. Alexandridis & Ekaterini Panopoulou & Ioannis Souropanis, 2024. "Forecasting exchange rates: An iterated combination constrained predictor approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(4), pages 983-1017, July.
    16. Hsu, Po-Hsuan & Taylor, Mark P. & Wang, Zigan & Xu, Qi, 2022. "Currency volatility and global technological innovation," Journal of International Economics, Elsevier, vol. 137(C).
    17. Beckmann, Joscha & Czudaj, Robert, 2017. "The impact of uncertainty on professional exchange rate forecasts," Journal of International Money and Finance, Elsevier, vol. 73(PB), pages 296-316.
    18. Kharrat, Sabrine & Hammami, Yacine & Fatnassi, Ibrahim, 2020. "On the cross-sectional relation between exchange rates and future fundamentals," Economic Modelling, Elsevier, vol. 89(C), pages 484-501.
    19. Buncic, Daniel & Piras, Gion Donat, 2016. "Heterogeneous agents, the financial crisis and exchange rate predictability," Journal of International Money and Finance, Elsevier, vol. 60(C), pages 313-359.
    20. Emanuel Kohlscheen & Fernando Avalos & Andreas Schrimpf, 2017. "When the Walk Is Not Random: Commodity Prices and Exchange Rates," International Journal of Central Banking, International Journal of Central Banking, vol. 13(2), pages 121-158, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:37:y:2020:i:c:s1544612319305367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.