IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v25y2018icp76-82.html
   My bibliography  Save this article

A parametric bootstrap to evaluate portfolio allocation models

Author

Listed:
  • Boynton, Wentworth
  • Chen, Fang

Abstract

If the asset returns are multivariate normal and the investor knows the moments, the Mean–Variance (MV) solution provides the portfolio with the highest Sharpe ratio. However, estimation errors of the moments misalign the allocation weights, and the out-of-sample Sharpe ratio falls. The paper introduces a parametric bootstrap to estimate the predictive Sharpe ratio, the most likely Sharpe ratio that the investor would see out of sample. This Sharpe ratio is advantageous because it includes the distortions from estimation errors and the investor can see the most likely results before investing capital. The approach is quite general and one can use the approach for any portfolio allocation model that uses the moments in some way. The ex ante feature of the test is key, as the test allows the investor to see which model works best before the investors commits capital.

Suggested Citation

  • Boynton, Wentworth & Chen, Fang, 2018. "A parametric bootstrap to evaluate portfolio allocation models," Finance Research Letters, Elsevier, vol. 25(C), pages 76-82.
  • Handle: RePEc:eee:finlet:v:25:y:2018:i:c:p:76-82
    DOI: 10.1016/j.frl.2017.10.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612317303239
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2017.10.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    2. Frankfurter, George M. & Phillips, Herbert E. & Seagle, John P., 1971. "Portfolio Selection: The Effects of Uncertain Means, Variances, and Covariances," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 6(5), pages 1251-1262, December.
    3. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1683, August.
    4. Kan, Raymond & Zhou, Guofu, 2007. "Optimal Portfolio Choice with Parameter Uncertainty," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 42(3), pages 621-656, September.
    5. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    6. Frost, Peter A. & Savarino, James E., 1986. "An Empirical Bayes Approach to Efficient Portfolio Selection," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(3), pages 293-305, September.
    7. repec:bla:jfinan:v:58:y:2003:i:4:p:1651-1684 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Istvan Varga-Haszonits & Fabio Caccioli & Imre Kondor, 2016. "Replica approach to mean-variance portfolio optimization," Papers 1606.08679, arXiv.org.
    2. Thomas J. Brennan & Andrew W. Lo, 2010. "Impossible Frontiers," Management Science, INFORMS, vol. 56(6), pages 905-923, June.
    3. Kourtis, Apostolos & Dotsis, George & Markellos, Raphael N., 2012. "Parameter uncertainty in portfolio selection: Shrinking the inverse covariance matrix," Journal of Banking & Finance, Elsevier, vol. 36(9), pages 2522-2531.
    4. Kircher, Felix & Rösch, Daniel, 2021. "A shrinkage approach for Sharpe ratio optimal portfolios with estimation risks," Journal of Banking & Finance, Elsevier, vol. 133(C).
    5. Varga-Haszonits, Istvan & Caccioli, Fabio & Kondor, Imre, 2016. "Replica approach to mean-variance portfolio optimization," LSE Research Online Documents on Economics 68955, London School of Economics and Political Science, LSE Library.
    6. DeMiguel, Victor & Martin-Utrera, Alberto & Nogales, Francisco J., 2013. "Size matters: Optimal calibration of shrinkage estimators for portfolio selection," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3018-3034.
    7. Fletcher, Jonathan, 2011. "Do optimal diversification strategies outperform the 1/N strategy in U.K. stock returns?," International Review of Financial Analysis, Elsevier, vol. 20(5), pages 375-385.
    8. Frahm, Gabriel & Memmel, Christoph, 2010. "Dominating estimators for minimum-variance portfolios," Journal of Econometrics, Elsevier, vol. 159(2), pages 289-302, December.
    9. Petukhina, Alla & Klochkov, Yegor & Härdle, Wolfgang Karl & Zhivotovskiy, Nikita, 2024. "Robustifying Markowitz," Journal of Econometrics, Elsevier, vol. 239(2).
    10. Jacobs, Heiko & Müller, Sebastian & Weber, Martin, 2014. "How should individual investors diversify? An empirical evaluation of alternative asset allocation policies," Journal of Financial Markets, Elsevier, vol. 19(C), pages 62-85.
    11. Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
    12. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    13. Alexander, Gordon J. & Baptista, Alexandre M. & Yan, Shu, 2017. "Portfolio selection with mental accounts and estimation risk," Journal of Empirical Finance, Elsevier, vol. 41(C), pages 161-186.
    14. Vasyl Golosnoy, 2010. "No-transaction bounds and estimation risk," Quantitative Finance, Taylor & Francis Journals, vol. 10(5), pages 487-493.
    15. Chavez-Bedoya, Luis & Rosales, Francisco, 2021. "Reduction of estimation risk in optimal portfolio choice using redundant constraints," International Review of Financial Analysis, Elsevier, vol. 78(C).
    16. Bouaddi, Mohammed & Moutanabbir, Khouzeima, 2023. "Rational distorted beliefs investor; which risk matters?," Finance Research Letters, Elsevier, vol. 51(C).
    17. Sven Husmann & Antoniya Shivarova & Rick Steinert, 2022. "Sparsity and stability for minimum-variance portfolios," Risk Management, Palgrave Macmillan, vol. 24(3), pages 214-235, September.
    18. Branger, Nicole & Lučivjanská, Katarína & Weissensteiner, Alex, 2019. "Optimal granularity for portfolio choice," Journal of Empirical Finance, Elsevier, vol. 50(C), pages 125-146.
    19. Giovanni Bonaccolto & Sandra Paterlini, 2020. "Developing new portfolio strategies by aggregation," Annals of Operations Research, Springer, vol. 292(2), pages 933-971, September.
    20. Frahm, Gabriel, 2010. "An analytical investigation of estimators for expected asset returns from the perspective of optimal asset allocation," Discussion Papers in Econometrics and Statistics 1/10, University of Cologne, Institute of Econometrics and Statistics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:25:y:2018:i:c:p:76-82. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.