IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v19y2016icp204-208.html
   My bibliography  Save this article

Integral representation of vega for American put options

Author

Listed:
  • Liu, Yanchu
  • Cui, Zhenyu
  • Zhang, Ning

Abstract

There is an inaccurate formula in Huang et al. (1996). In fact, a substantial term is missing in their equation (14) for computing the value of an important option hedging parameter, i.e., the vega. We fix it in this note by providing its correct form and characterizing an associated (new) integral equation. Some related explanations and arguments are also corrected.

Suggested Citation

  • Liu, Yanchu & Cui, Zhenyu & Zhang, Ning, 2016. "Integral representation of vega for American put options," Finance Research Letters, Elsevier, vol. 19(C), pages 204-208.
  • Handle: RePEc:eee:finlet:v:19:y:2016:i:c:p:204-208
    DOI: 10.1016/j.frl.2016.07.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612316301349
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2016.07.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ballestra, Luca Vincenzo & Cecere, Liliana, 2015. "Pricing American options under the constant elasticity of variance model: An extension of the method by Barone-Adesi and Whaley," Finance Research Letters, Elsevier, vol. 14(C), pages 45-55.
    2. Jing-Zhi Huang & Marti G. Subrahmanyam & G. George Yu, 1999. "Pricing And Hedging American Options: A Recursive Integration Method," World Scientific Book Chapters, in: Marco Avellaneda (ed.), Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar, chapter 8, pages 219-239, World Scientific Publishing Co. Pte. Ltd..
    3. Gao, Bin & Huang, Jing-zhi & Subrahmanyam, Marti, 2000. "The valuation of American barrier options using the decomposition technique," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1783-1827, October.
    4. Laminou Abdou, Souleymane & Moraux, Franck, 2016. "Pricing and hedging American and hybrid strangles with finite maturity," Journal of Banking & Finance, Elsevier, vol. 62(C), pages 112-125.
    5. David S. Bunch & Herb Johnson, 2000. "The American Put Option and Its Critical Stock Price," Journal of Finance, American Finance Association, vol. 55(5), pages 2333-2356, October.
    6. Han, Heejae & Jeon, Junkee & Kang, Myungjoo, 2016. "Closed form valuation of American chained knock-in options," Finance Research Letters, Elsevier, vol. 17(C), pages 176-185.
    7. Siim Kallast & Andi Kivinukk, 2003. "Pricing and Hedging American Options Using Approximations by Kim Integral Equations," Review of Finance, Springer, vol. 7(3), pages 361-383.
    8. Chung, Y. Peter & Johnson, Herb & Polimenis, Vassilis, 2011. "The critical stock price for the American put option," Finance Research Letters, Elsevier, vol. 8(1), pages 8-14, March.
    9. Song-Ping Zhu, 2006. "An exact and explicit solution for the valuation of American put options," Quantitative Finance, Taylor & Francis Journals, vol. 6(3), pages 229-242.
    10. Siim Kallast & Andi Kivinukk, 2003. "Pricing and Hedging American Options Using Approximations by Kim Integral Equations," Review of Finance, European Finance Association, vol. 7(3), pages 361-383.
    11. Barone-Adesi, Giovanni, 2005. "The saga of the American put," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2909-2918, November.
    12. In oon Kim & Bong-Gyu Jang & Kyeong Tae Kim, 2013. "A simple iterative method for the valuation of American options," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 885-895, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minqiang Li, 2010. "Analytical approximations for the critical stock prices of American options: a performance comparison," Review of Derivatives Research, Springer, vol. 13(1), pages 75-99, April.
    2. Aricson Cruz & José Carlos Dias, 2020. "Valuing American-style options under the CEV model: an integral representation based method," Review of Derivatives Research, Springer, vol. 23(1), pages 63-83, April.
    3. Minqiang Li, 2010. "A quasi-analytical interpolation method for pricing American options under general multi-dimensional diffusion processes," Review of Derivatives Research, Springer, vol. 13(2), pages 177-217, July.
    4. Detemple, Jérôme & Emmerling, Thomas, 2009. "American chooser options," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 128-153, January.
    5. In oon Kim & Bong-Gyu Jang & Kyeong Tae Kim, 2013. "A simple iterative method for the valuation of American options," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 885-895, May.
    6. Qianru Shang & Brian Byrne, 2021. "American option pricing: Optimal Lattice models and multidimensional efficiency tests," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(4), pages 514-535, April.
    7. Fabozzi, Frank J. & Paletta, Tommaso & Stanescu, Silvia & Tunaru, Radu, 2016. "An improved method for pricing and hedging long dated American options," European Journal of Operational Research, Elsevier, vol. 254(2), pages 656-666.
    8. Andrew Ziogas, 2005. "Pricing American Options Using Fourier Analysis," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2005, January-A.
    9. Carl Chiarella & Andrew Ziogas, 2009. "American Call Options Under Jump-Diffusion Processes - A Fourier Transform Approach," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(1), pages 37-79.
    10. Alghalith, Moawia, 2018. "Pricing the American options using the Black–Scholes pricing formula," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 443-445.
    11. Alghalith, Moawia, 2020. "Pricing the American options: A closed-form, simple formula," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    12. Sha Lin & Song‐Ping Zhu, 2022. "Pricing callable–puttable convertible bonds with an integral equation approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(10), pages 1856-1911, October.
    13. Denis Veliu & Roberto De Marchis & Mario Marino & Antonio Luciano Martire, 2022. "An Alternative Numerical Scheme to Approximate the Early Exercise Boundary of American Options," Mathematics, MDPI, vol. 11(1), pages 1-12, December.
    14. Leunglung Chan & Song-Ping Zhu, 2021. "An Analytic Approach for Pricing American Options with Regime Switching," JRFM, MDPI, vol. 14(5), pages 1-20, April.
    15. Ludovic Mathys, 2019. "On Extensions of the Barone-Adesi & Whaley Method to Price American-Type Options," Papers 1912.00454, arXiv.org.
    16. Andrew Ziogas, 2005. "Pricing American Options Using Fourier Analysis," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 29, July-Dece.
    17. Jonathan Ziveyi, 2011. "The Evaluation of Early Exercise Exotic Options," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2011, January-A.
    18. Shen, Yang & Sherris, Michael & Ziveyi, Jonathan, 2016. "Valuation of guaranteed minimum maturity benefits in variable annuities with surrender options," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 127-137.
    19. Cristina Viegas & José Azevedo-Pereira, 2020. "A Quasi-Closed-Form Solution for the Valuation of American Put Options," IJFS, MDPI, vol. 8(4), pages 1-16, October.
    20. Jonathan Ziveyi, 2011. "The Evaluation of Early Exercise Exotic Options," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 12, July-Dece.

    More about this item

    Keywords

    American put options; Vega; Exercise boundary; Integral equation;
    All these keywords.

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:19:y:2016:i:c:p:204-208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.