IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v17y2016icp72-78.html
   My bibliography  Save this article

The Sharpe ratio of estimated efficient portfolios

Author

Listed:
  • Kourtis, Apostolos

Abstract

Investors often adopt mean–variance efficient portfolios for achieving superior risk-adjusted returns. However, such portfolios are sensitive to estimation errors, which affect portfolio performance. To understand the impact of estimation errors, I develop simple and intuitive formulas of the squared Sharpe ratio that investors should expect from estimated efficient portfolios. The new formulas show that the expected squared Sharpe ratio is a function of the length of the available data, the number of assets and the maximum attainable Sharpe ratio. My results enable the portfolio manager to assess the value of efficient portfolios as investment vehicles, given the investment environment.

Suggested Citation

  • Kourtis, Apostolos, 2016. "The Sharpe ratio of estimated efficient portfolios," Finance Research Letters, Elsevier, vol. 17(C), pages 72-78.
  • Handle: RePEc:eee:finlet:v:17:y:2016:i:c:p:72-78
    DOI: 10.1016/j.frl.2016.01.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612316000106
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2016.01.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tu, Jun & Zhou, Guofu, 2011. "Markowitz meets Talmud: A combination of sophisticated and naive diversification strategies," Journal of Financial Economics, Elsevier, vol. 99(1), pages 204-215, January.
    2. Noël Amenc & Lionel Martellini & Mathieu Vaissié, 2003. "Benefits and risks of alternative investment strategies," Journal of Asset Management, Palgrave Macmillan, vol. 4(2), pages 96-118, August.
    3. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    4. Kan, Raymond & Zhou, Guofu, 2007. "Optimal Portfolio Choice with Parameter Uncertainty," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 42(3), pages 621-656, September.
    5. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    6. Paolella, Marc S., 2003. "Computing moments of ratios of quadratic forms in normal variables," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 313-331, March.
    7. Treynor, Jack L & Black, Fischer, 1973. "How to Use Security Analysis to Improve Portfolio Selection," The Journal of Business, University of Chicago Press, vol. 46(1), pages 66-86, January.
    8. Miller, Robert E. & Gehr, Adam K., 1978. "Sample Size Bias and Sharpe's Performance Measure: A Note," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 13(5), pages 943-946, December.
    9. Merton, Robert C., 1980. "On estimating the expected return on the market : An exploratory investigation," Journal of Financial Economics, Elsevier, vol. 8(4), pages 323-361, December.
    10. repec:dau:papers:123456789/1378 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feghhi Kashani , Mohammad & Mohebimajd , Ahmadreza, 2021. "Outperformance Testing of a Dynamic Assets Portfolio Selection Supplemented with a Continuous Paths Levy Process," Journal of Money and Economy, Monetary and Banking Research Institute, Central Bank of the Islamic Republic of Iran, vol. 16(2), pages 253-282, June.
    2. Filip Stanv{e}k, 2024. "M6 Investment Challenge: The Role of Luck and Strategic Considerations," Papers 2412.04490, arXiv.org.
    3. Vukovic, Darko & Lapshina, Kseniya A. & Maiti, Moinak, 2019. "European Monetary Union bond market dynamics: Pre & post crisis," Research in International Business and Finance, Elsevier, vol. 50(C), pages 369-380.
    4. Blankenberg, Ann-Kathrin & Gottschalk, Jonas F. A., 2018. "Is socially responsible investing (SRI) in stocks a competitive capital investment? A comparative analysis based on the performance of sustainable stocks," University of Göttingen Working Papers in Economics 349, University of Goettingen, Department of Economics.
    5. Lu, Jin-Ray & Li, Xiu-Yan, 2021. "Identifying the fair value of Sharpe ratio by an option valuation approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 82(C), pages 63-70.
    6. Simona Cosma & Paolo Cucurachi & Vincenzo Gentile & Giuseppe Rimo, 2024. "Sustainable finance disclosure regulation insights: Unveiling socially responsible funds performance during COVID‐19 pandemic and Russia–Ukraine war," Business Strategy and the Environment, Wiley Blackwell, vol. 33(4), pages 3242-3257, May.
    7. José Claudio Isaias & Pedro Paulo Balestrassi & Guilherme Augusto Barucke Marcondes & Wesley Vieira da Silva & Carlos Henrique Pereira Mello & Claudimar Pereira da Veiga, 2021. "Project Portfolio Selection of Solar Energy by Photovoltaic Generation Using Gini-CAPM Multi-Criteria and Considering ROI Covariations," Energies, MDPI, vol. 14(24), pages 1-21, December.
    8. Lesly Lisset Ortiz-Cerezo & Alin Andrei Carsteanu & Julio Bernardo Clempner, 2022. "Sharpe-Ratio Portfolio in Controllable Markov Chains: Analytic and Algorithmic Approach for Second Order Cone Programming," Mathematics, MDPI, vol. 10(18), pages 1-13, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Cheng & Zhang, Huazhu, 2017. "Mean-variance versus naïve diversification: The role of mispricing," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 48(C), pages 61-81.
    2. Ni, Xuanming & Zheng, Tiantian & Zhao, Huimin & Zhu, Shushang, 2023. "High-dimensional portfolio optimization based on tree-structured factor model," Pacific-Basin Finance Journal, Elsevier, vol. 81(C).
    3. Han, Chulwoo, 2020. "A nonparametric approach to portfolio shrinkage," Journal of Banking & Finance, Elsevier, vol. 120(C).
    4. Hsu, Po-Hsuan & Han, Qiheng & Wu, Wensheng & Cao, Zhiguang, 2018. "Asset allocation strategies, data snooping, and the 1 / N rule," Journal of Banking & Finance, Elsevier, vol. 97(C), pages 257-269.
    5. Branger, Nicole & Lučivjanská, Katarína & Weissensteiner, Alex, 2019. "Optimal granularity for portfolio choice," Journal of Empirical Finance, Elsevier, vol. 50(C), pages 125-146.
    6. Allen, D. & Lizieri, C. & Satchell, S., 2012. "Mean-Variance versus 1/N: What if we can forecast? (Updated 22nd December 2013)," Cambridge Working Papers in Economics 1244, Faculty of Economics, University of Cambridge.
    7. Hwang, Inchang & Xu, Simon & In, Francis, 2018. "Naive versus optimal diversification: Tail risk and performance," European Journal of Operational Research, Elsevier, vol. 265(1), pages 372-388.
    8. Behr, Patrick & Guettler, Andre & Truebenbach, Fabian, 2012. "Using industry momentum to improve portfolio performance," Journal of Banking & Finance, Elsevier, vol. 36(5), pages 1414-1423.
    9. Füss, Roland & Miebs, Felix & Trübenbach, Fabian, 2014. "A jackknife-type estimator for portfolio revision," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 14-28.
    10. Hautsch, Nikolaus & Voigt, Stefan, 2019. "Large-scale portfolio allocation under transaction costs and model uncertainty," Journal of Econometrics, Elsevier, vol. 212(1), pages 221-240.
    11. Paolella, Marc S. & Polak, Paweł & Walker, Patrick S., 2021. "A non-elliptical orthogonal GARCH model for portfolio selection under transaction costs," Journal of Banking & Finance, Elsevier, vol. 125(C).
    12. Rad, Hossein & Low, Rand Kwong Yew & Miffre, Joëlle & Faff, Robert, 2020. "Does sophistication of the weighting scheme enhance the performance of long-short commodity portfolios?," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 164-180.
    13. Thomas Trier Bjerring & Omri Ross & Alex Weissensteiner, 2017. "Feature selection for portfolio optimization," Annals of Operations Research, Springer, vol. 256(1), pages 21-40, September.
    14. Platanakis, Emmanouil & Sutcliffe, Charles & Ye, Xiaoxia, 2021. "Horses for courses: Mean-variance for asset allocation and 1/N for stock selection," European Journal of Operational Research, Elsevier, vol. 288(1), pages 302-317.
    15. Chen, Jia & Li, Degui & Linton, Oliver, 2019. "A new semiparametric estimation approach for large dynamic covariance matrices with multiple conditioning variables," Journal of Econometrics, Elsevier, vol. 212(1), pages 155-176.
    16. Tu, Xueyong & Li, Bin, 2024. "Robust portfolio selection with smart return prediction," Economic Modelling, Elsevier, vol. 135(C).
    17. Maller, Ross & Roberts, Steven & Tourky, Rabee, 2016. "The large-sample distribution of the maximum Sharpe ratio with and without short sales," Journal of Econometrics, Elsevier, vol. 194(1), pages 138-152.
    18. Lassance, Nathan & Vanderveken, Rodolphe & Vrins, Frédéric, 2022. "On the optimal combination of naive and mean-variance portfolio strategies," LIDAM Discussion Papers LFIN 2022006, Université catholique de Louvain, Louvain Finance (LFIN).
    19. Hongseon Kim & Soonbong Lee & Seung Bum Soh & Seongmoon Kim, 2022. "Improving portfolio investment performance with distance‐based portfolio‐combining algorithms," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 45(4), pages 941-959, December.
    20. Chavez-Bedoya, Luis & Rosales, Francisco, 2021. "Reduction of estimation risk in optimal portfolio choice using redundant constraints," International Review of Financial Analysis, Elsevier, vol. 78(C).

    More about this item

    Keywords

    Portfolio performance; Mean–variance analysis; Estimation errors;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:17:y:2016:i:c:p:72-78. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.