IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v13y2015icp172-178.html
   My bibliography  Save this article

Predicting the equity premium with the demand for gold coins and bars

Author

Listed:
  • Baur, Dirk G.
  • Löffler, Gunter

Abstract

In this paper, we propose novel predictor variables for forecasting stock market returns. We investigate the predictive power of the demand for gold coins and bars as a proxy for the risk premium consistent with the safe haven property of gold. The gold demand variables reflect the behaviour of retail investors and thus also represent a new class of predictors. Our analysis shows that the demand for gold is positively correlated with future stock returns and enhances the predictive power of the dividend yield and other variables.

Suggested Citation

  • Baur, Dirk G. & Löffler, Gunter, 2015. "Predicting the equity premium with the demand for gold coins and bars," Finance Research Letters, Elsevier, vol. 13(C), pages 172-178.
  • Handle: RePEc:eee:finlet:v:13:y:2015:i:c:p:172-178
    DOI: 10.1016/j.frl.2015.01.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612315000173
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2015.01.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dirk G. Baur & Brian M. Lucey, 2010. "Is Gold a Hedge or a Safe Haven? An Analysis of Stocks, Bonds and Gold," The Financial Review, Eastern Finance Association, vol. 45(2), pages 217-229, May.
    2. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    3. Virginie Coudert & Hélène Raymond-Feingold, 2011. "Gold and financial assets: Are there any safe havens in bear markets?," Economics Bulletin, AccessEcon, vol. 31(2), pages 1613-1622.
    4. Hodrick, Robert J, 1992. "Dividend Yields and Expected Stock Returns: Alternative Procedures for Inference and Measurement," The Review of Financial Studies, Society for Financial Studies, vol. 5(3), pages 357-386.
    5. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    6. Baur, Dirk G. & McDermott, Thomas K., 2010. "Is gold a safe haven? International evidence," Journal of Banking & Finance, Elsevier, vol. 34(8), pages 1886-1898, August.
    7. David E. Rapach & Jack K. Strauss & Guofu Zhou, 2013. "International Stock Return Predictability: What Is the Role of the United States?," Journal of Finance, American Finance Association, vol. 68(4), pages 1633-1662, August.
    8. Michael Johannes & Arthur Korteweg & Nicholas Polson, 2014. "Sequential Learning, Predictability, and Optimal Portfolio Returns," Journal of Finance, American Finance Association, vol. 69(2), pages 611-644, April.
    9. Ilan Cooper & Richard Priestley, 2013. "The World Business Cycle and Expected Returns," Review of Finance, European Finance Association, vol. 17(3), pages 1029-1064.
    10. George M. Korniotis & Alok Kumar, 2013. "State-Level Business Cycles and Local Return Predictability," Journal of Finance, American Finance Association, vol. 68(3), pages 1037-1096, June.
    11. David E. Rapach & Jack K. Strauss & Guofu Zhou, 2010. "Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy," The Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 821-862, February.
    12. John H. Cochrane, 2008. "The Dog That Did Not Bark: A Defense of Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1533-1575, July.
    13. Fama, Eugene F. & French, Kenneth R., 1988. "Dividend yields and expected stock returns," Journal of Financial Economics, Elsevier, vol. 22(1), pages 3-25, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nguyen, Duc Binh Benno & Prokopczuk, Marcel & Wese Simen, Chardin, 2019. "The risk premium of gold," Journal of International Money and Finance, Elsevier, vol. 94(C), pages 140-159.
    2. Hoang, Thi-Hong-Van & Zhu, Zhenzhen & El Khamlichi, Abdelbari & Wong, Wing-Keung, 2019. "Does the Shari’ah screening impact the gold-stock nexus? A sectorial analysis," Resources Policy, Elsevier, vol. 61(C), pages 617-626.
    3. Hoang, Thi-Hong-Van & Wong, Wing-Keung & Zhu, Zhenzhen, 2015. "Is gold different for risk-averse and risk-seeking investors? An empirical analysis of the Shanghai Gold Exchange," Economic Modelling, Elsevier, vol. 50(C), pages 200-211.
    4. Abdelbari El Khamlichi & Thi Hong Van Hoang & Wing‐keung Wong, 2016. "Is Gold Different for Islamic and Conventional Portfolios? A Sectorial Analysis," Post-Print hal-02964594, HAL.
    5. Charteris, Ailie & Kallinterakis, Vasileios, 2021. "Feedback trading in retail-dominated assets: Evidence from the gold bullion coin market," International Review of Financial Analysis, Elsevier, vol. 75(C).
    6. Joscha Beckmann & Theo Berger & Robert Czudaj & Thi-Hong-Van Hoang, 2019. "Tail dependence between gold and sectorial stocks in China: perspectives for portfolio diversification," Empirical Economics, Springer, vol. 56(3), pages 1117-1144, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mykola Babiak & Jozef Barunik, 2020. "Deep Learning, Predictability, and Optimal Portfolio Returns," CERGE-EI Working Papers wp677, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    2. Gonçalo Faria & Fabio Verona, 2016. "Forecasting the equity risk premium with frequency-decomposed predictors," Working Papers de Economia (Economics Working Papers) 06, Católica Porto Business School, Universidade Católica Portuguesa.
    3. Boudoukh, Jacob & Israel, Ronen & Richardson, Matthew, 2022. "Biases in long-horizon predictive regressions," Journal of Financial Economics, Elsevier, vol. 145(3), pages 937-969.
    4. Gonçalo Faria & Fabio Verona, 2016. "Forecasting the equity risk premium with frequency-decomposed predictors," Working Papers de Economia (Economics Working Papers) 06, Católica Porto Business School, Universidade Católica Portuguesa.
    5. repec:zbw:bofrdp:2017_001 is not listed on IDEAS
    6. Lawrenz, Jochen & Zorn, Josef, 2017. "Predicting international stock returns with conditional price-to-fundamental ratios," Journal of Empirical Finance, Elsevier, vol. 43(C), pages 159-184.
    7. David Haab & Dr. Thomas Nitschka, 2017. "Predicting returns on asset markets of a small, open economy and the influence of global risks," Working Papers 2017-14, Swiss National Bank.
    8. Chen, Yong & Da, Zhi & Huang, Dayong, 2022. "Short selling efficiency," Journal of Financial Economics, Elsevier, vol. 145(2), pages 387-408.
    9. Charles, Amelie & Darne, Olivier & Kim, Jae, 2016. "Stock Return Predictability: Evaluation based on Prediction Intervals," MPRA Paper 70143, University Library of Munich, Germany.
    10. Yu, Deshui & Huang, Difang, 2023. "Cross-sectional uncertainty and expected stock returns," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 321-340.
    11. Phan, Dinh Hoang Bach & Sharma, Susan Sunila & Tran, Vuong Thao, 2018. "Can economic policy uncertainty predict stock returns? Global evidence," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 55(C), pages 134-150.
    12. Amélie Charles & Olivier Darné & Jae H. Kim, 2022. "Stock return predictability: Evaluation based on interval forecasts," Bulletin of Economic Research, Wiley Blackwell, vol. 74(2), pages 363-385, April.
    13. Jiang, Fuwei & Lee, Joshua & Martin, Xiumin & Zhou, Guofu, 2019. "Manager sentiment and stock returns," Journal of Financial Economics, Elsevier, vol. 132(1), pages 126-149.
    14. Biao Guo & Hai Lin, 2020. "Volatility and jump risk in option returns," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(11), pages 1767-1792, November.
    15. Hai Lin & Daniel Quill & Henk Berkman, 2016. "Information diffusion and the predictability of New Zealand stock market returns," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 56(3), pages 749-785, September.
    16. Faria, Gonçalo & Verona, Fabio, 2018. "Forecasting stock market returns by summing the frequency-decomposed parts," Journal of Empirical Finance, Elsevier, vol. 45(C), pages 228-242.
    17. Nguyen, Duc Binh Benno & Prokopczuk, Marcel & Wese Simen, Chardin, 2019. "The risk premium of gold," Journal of International Money and Finance, Elsevier, vol. 94(C), pages 140-159.
    18. Pyun, Sungjune, 2019. "Variance risk in aggregate stock returns and time-varying return predictability," Journal of Financial Economics, Elsevier, vol. 132(1), pages 150-174.
    19. Smith, Simon C., 2021. "International stock return predictability," International Review of Financial Analysis, Elsevier, vol. 78(C).
    20. Atanasov, Victoria, 2018. "World output gap and global stock returns," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 181-197.
    21. Faria, Gonçalo & Verona, Fabio, 2018. "Forecasting stock market returns by summing the frequency-decomposed parts," Journal of Empirical Finance, Elsevier, vol. 45(C), pages 228-242.

    More about this item

    Keywords

    Equity premium; Stock returns; Gold; Gold bars; Gold coins; Predictive regressions;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:13:y:2015:i:c:p:172-178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.