IDEAS home Printed from https://ideas.repec.org/a/eee/finana/v77y2021ics105752192100154x.html
   My bibliography  Save this article

On equity market inefficiency during the COVID-19 pandemic

Author

Listed:
  • Navratil, Robert
  • Taylor, Stephen
  • Vecer, Jan

Abstract

We show that during the weeks following the initiation of the COVID-19 pandemic, the United States equity market was inefficient. This is demonstrated by showing that utility maximizing agents over the time period ranging from mid-February to late March 2020 can generate statistically significant profits by utilizing only historical price and virus related data to forecast future equity ETF returns. We generalize Merton’s optimal portfolio problem using a novel method based upon a likelihood ratio in order to construct a dynamic trading strategy for utility maximizing agents. These strategies are shown to have statistically significant profitability and strong risk and performance statistics during the COVID-19 time-frame.

Suggested Citation

  • Navratil, Robert & Taylor, Stephen & Vecer, Jan, 2021. "On equity market inefficiency during the COVID-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 77(C).
  • Handle: RePEc:eee:finana:v:77:y:2021:i:c:s105752192100154x
    DOI: 10.1016/j.irfa.2021.101820
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S105752192100154X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.irfa.2021.101820?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baek, Seungho & Mohanty, Sunil K. & Glambosky, Mina, 2020. "COVID-19 and stock market volatility: An industry level analysis," Finance Research Letters, Elsevier, vol. 37(C).
    2. John Y. Campbell & Luis M. Viceira, 1999. "Consumption and Portfolio Decisions when Expected Returns are Time Varying," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(2), pages 433-495.
    3. Just, Małgorzata & Echaust, Krzysztof, 2020. "Stock market returns, volatility, correlation and liquidity during the COVID-19 crisis: Evidence from the Markov switching approach," Finance Research Letters, Elsevier, vol. 37(C).
    4. Scott R Baker & Nicholas Bloom & Steven J Davis & Kyle Kost & Marco Sammon & Tasaneeya Viratyosin & Jeffrey Pontiff, 0. "The Unprecedented Stock Market Reaction to COVID-19," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 10(4), pages 742-758.
    5. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
    6. Stefano Ramelli & Alexander F Wagner, 2020. "Feverish Stock Price Reactions to COVID-19," The Review of Corporate Finance Studies, Society for Financial Studies, vol. 9(3), pages 622-655.
    7. Pan, Zhiyuan & Pettenuzzo, Davide & Wang, Yudong, 2020. "Forecasting stock returns: A predictor-constrained approach," Journal of Empirical Finance, Elsevier, vol. 55(C), pages 200-217.
    8. Frezza, Massimiliano & Bianchi, Sergio & Pianese, Augusto, 2021. "Fractal analysis of market (in)efficiency during the COVID-19," Finance Research Letters, Elsevier, vol. 38(C).
    9. Cepoi, Cosmin-Octavian, 2020. "Asymmetric dependence between stock market returns and news during COVID-19 financial turmoil," Finance Research Letters, Elsevier, vol. 36(C).
    10. Balcilar, Mehmet & Gupta, Rangan & Miller, Stephen M., 2015. "Regime switching model of US crude oil and stock market prices: 1859 to 2013," Energy Economics, Elsevier, vol. 49(C), pages 317-327.
    11. DIMA, Bogdan & DIMA, Ştefana Maria & IOAN, Roxana, 2021. "Remarks on the behaviour of financial market efficiency during the COVID-19 pandemic. The case of VIX," Finance Research Letters, Elsevier, vol. 43(C).
    12. K. J. Arrow, 1964. "The Role of Securities in the Optimal Allocation of Risk-bearing," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 31(2), pages 91-96.
    13. Stefano Ramelli & Alexander F Wagner, 0. "Feverish Stock Price Reactions to COVID-19," Review of Corporate Finance Studies, Oxford University Press, vol. 9(3), pages 622-655.
    14. Dangl, Thomas & Halling, Michael, 2012. "Predictive regressions with time-varying coefficients," Journal of Financial Economics, Elsevier, vol. 106(1), pages 157-181.
    15. Nguyen, Dat Thanh & Phan, Dinh Hoang Bach & Ming, Tee Chwee & Nguyen, Van Ky Long, 2021. "An assessment of how COVID-19 changed the global equity market," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 480-491.
    16. Yi, Yongsheng & Ma, Feng & Zhang, Yaojie & Huang, Dengshi, 2018. "Forecasting the prices of crude oil using the predictor, economic and combined constraints," Economic Modelling, Elsevier, vol. 75(C), pages 237-245.
    17. David E. Rapach & Jack K. Strauss & Guofu Zhou, 2010. "Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy," The Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 821-862, February.
    18. Choi, Sun-Yong, 2021. "Analysis of stock market efficiency during crisis periods in the US stock market: Differences between the global financial crisis and COVID-19 pandemic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    19. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    20. Zhang, Yaojie & Ma, Feng & Shi, Benshan & Huang, Dengshi, 2018. "Forecasting the prices of crude oil: An iterated combination approach," Energy Economics, Elsevier, vol. 70(C), pages 472-483.
    21. Azimli, Asil, 2020. "The impact of COVID-19 on the degree of dependence and structure of risk-return relationship: A quantile regression approach," Finance Research Letters, Elsevier, vol. 36(C).
    22. Mark Richard & Jan Vecer, 2021. "Efficiency Testing of Prediction Markets: Martingale Approach, Likelihood Ratio and Bayes Factor Analysis," Risks, MDPI, vol. 9(2), pages 1-20, February.
    23. Zhang, Yaojie & Zeng, Qing & Ma, Feng & Shi, Benshan, 2019. "Forecasting stock returns: Do less powerful predictors help?," Economic Modelling, Elsevier, vol. 78(C), pages 32-39.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Polyzos, Efstathios & Wang, Fang, 2022. "Twitter and market efficiency in energy markets: Evidence using LDA clustered topic extraction," Energy Economics, Elsevier, vol. 114(C).
    2. Efstathios Polyzos & Ghulame Rubbaniy & Mieszko Mazur, 2024. "Efficient Market Hypothesis on the blockchain: A social‐media‐based index for cryptocurrency efficiency," The Financial Review, Eastern Finance Association, vol. 59(3), pages 807-829, August.
    3. Yousefi, Hamed & Najand, Mohammad, 2022. "Geographical diversification using ETFs: Multinational evidence from COVID-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 83(C).
    4. Villena, Marcelo J. & Araneda, Axel A., 2024. "On sectoral market efficiency," Finance Research Letters, Elsevier, vol. 61(C).
    5. Pedro Antonio González & José Luis Gallizo, 2021. "Impact of COVID-19 on the Stock Market by Industrial Sector in Chile: An Adverse Overreaction," JRFM, MDPI, vol. 14(11), pages 1-24, November.
    6. Clement Moyo & Izunna Anyikwa & Andrew Phiri, 2023. "The Impact of Covid-19 on Oil Market Returns: Has Market Efficiency Being Violated?," International Journal of Energy Economics and Policy, Econjournals, vol. 13(1), pages 118-127, January.
    7. Navratil, Robert & Taylor, Stephen & Vecer, Jan, 2022. "On the utility maximization of the discrepancy between a perceived and market implied risk neutral distribution," European Journal of Operational Research, Elsevier, vol. 302(3), pages 1215-1229.
    8. Claudiu Tiberiu Albulescu & Eugenia Grecu, 2023. "Government Interventions and Sovereign Bond Market Volatility during COVID-19: A Quantile Analysis," Mathematics, MDPI, vol. 11(5), pages 1-14, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yaojie Zhang & Feng Ma & Chao Liang & Yi Zhang, 2021. "Good variance, bad variance, and stock return predictability," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4410-4423, July.
    2. Zhang, Yaojie & Wei, Yu & Ma, Feng & Yi, Yongsheng, 2019. "Economic constraints and stock return predictability: A new approach," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 1-9.
    3. Vera-Valdés, J. Eduardo, 2022. "The persistence of financial volatility after COVID-19," Finance Research Letters, Elsevier, vol. 44(C).
    4. Qingxiang Han & Mengxi He & Yaojie Zhang & Muhammad Umar, 2023. "Default return spread: A powerful predictor of crude oil price returns," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1786-1804, November.
    5. Su, Yuandong & Lu, Xinjie & Zeng, Qing & Huang, Dengshi, 2022. "Good air quality and stock market returns," Research in International Business and Finance, Elsevier, vol. 62(C).
    6. Wen, Danyan & Liu, Li & Wang, Yudong & Zhang, Yaojie, 2022. "Forecasting crude oil market returns: Enhanced moving average technical indicators," Resources Policy, Elsevier, vol. 76(C).
    7. Nonejad, Nima, 2022. "Predicting equity premium out-of-sample by conditioning on newspaper-based uncertainty measures: A comparative study," International Review of Financial Analysis, Elsevier, vol. 83(C).
    8. Yuan, Xianghui & Li, Xiang, 2022. "Delta-hedging demand and intraday momentum: Evidence from China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    9. Peng-Fei Dai & Xiong Xiong & Zhifeng Liu & Toan Luu Duc Huynh & Jianjun Sun, 2021. "Preventing crash in stock market: The role of economic policy uncertainty during COVID-19," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-15, December.
    10. João F. Caldeira & Rangan Gupta & Hudson S. Torrent, 2020. "Forecasting U.S. Aggregate Stock Market Excess Return: Do Functional Data Analysis Add Economic Value?," Mathematics, MDPI, vol. 8(11), pages 1-16, November.
    11. Nima Nonejad, 2021. "Bayesian model averaging and the conditional volatility process: an application to predicting aggregate equity returns by conditioning on economic variables," Quantitative Finance, Taylor & Francis Journals, vol. 21(8), pages 1387-1411, August.
    12. Contessi, Silvio & De Pace, Pierangelo, 2021. "The international spread of COVID-19 stock market collapses," Finance Research Letters, Elsevier, vol. 42(C).
    13. Yashraj Varma & Renuka Venkataramani & Parthajit Kayal & Moinak Maiti, 2021. "Short-Term Impact of COVID-19 on Indian Stock Market," JRFM, MDPI, vol. 14(11), pages 1-15, November.
    14. Dai, Zhifeng & Zhu, Huan, 2020. "Stock return predictability from a mixed model perspective," Pacific-Basin Finance Journal, Elsevier, vol. 60(C).
    15. Zhang, Yaojie & Ma, Feng & Zhu, Bo, 2019. "Intraday momentum and stock return predictability: Evidence from China," Economic Modelling, Elsevier, vol. 76(C), pages 319-329.
    16. Rouatbi, Wael & Demir, Ender & Kizys, Renatas & Zaremba, Adam, 2021. "Immunizing markets against the pandemic: COVID-19 vaccinations and stock volatility around the world," International Review of Financial Analysis, Elsevier, vol. 77(C).
    17. Dai, Zhifeng & Kang, Jie & Wen, Fenghua, 2021. "Predicting stock returns: A risk measurement perspective," International Review of Financial Analysis, Elsevier, vol. 74(C).
    18. Sabeeh Ullah, 2023. "Impact of COVID-19 Pandemic on Financial Markets: a Global Perspective," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 14(2), pages 982-1003, June.
    19. Meral Kagitci, 2020. "The impact of COVID – 19 on the stocks’ yield from the pharmaceutical sector," Journal of Financial Studies, Institute of Financial Studies, vol. 9(5), pages 58-71, November.
    20. Shi, Chunpei & Wei, Yu & Li, Xiafei & Liu, Yuntong, 2023. "Combination forecasts of China's oil futures returns based on multiple uncertainties and their connectedness with oil," Energy Economics, Elsevier, vol. 126(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finana:v:77:y:2021:i:c:s105752192100154x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620166 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.