IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v97y2016icp214-228.html
   My bibliography  Save this article

Impact of energy storage units on load frequency control of deregulated power systems

Author

Listed:
  • Selvaraju, Ramesh Kumar
  • Somaskandan, Ganapathy

Abstract

Energy storage units are very vital for damping the oscillations due to the sudden changes in power system. The integration of small capacity energy storage unit to the power system in each area can effectively restrain the system oscillations. Hence in this paper, the energy storage devices, SMES (Superconducting Magnetic Energy Storage) units and RFB (Redox Flow Batteries) have been integrated into the interconnected deregulated LFC (Load Frequency Control) power system model and their effectiveness in improving the system performance has been realized and compared. The proposed controller design is applied to an interconnected two-area two-unit thermal deregulated power system with one reheat and one non-reheat unit in each area. This paper also proposes a new design of intelligent controller for load frequency control of interconnected deregulated power systems with energy storage devices using Artificial Cooperative Search algorithm. To prove the scalability of the proposed framework, the design has also been implemented on a three-area interconnected deregulated power system model. The simulation results show the effective and efficient performance of RFB energy storage unit and the effectiveness of ACS (Artificial Cooperative Search) algorithm tuned controller in improving the system performance of interconnected deregulated power system.

Suggested Citation

  • Selvaraju, Ramesh Kumar & Somaskandan, Ganapathy, 2016. "Impact of energy storage units on load frequency control of deregulated power systems," Energy, Elsevier, vol. 97(C), pages 214-228.
  • Handle: RePEc:eee:energy:v:97:y:2016:i:c:p:214-228
    DOI: 10.1016/j.energy.2015.12.121
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215017661
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.12.121?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Latif, Abdul & Hussain, S.M. Suhail & Das, Dulal Chandra & Ustun, Taha Selim, 2020. "State-of-the-art of controllers and soft computing techniques for regulated load frequency management of single/multi-area traditional and renewable energy based power systems," Applied Energy, Elsevier, vol. 266(C).
    2. Arya, Yogendra, 2017. "AGC performance enrichment of multi-source hydrothermal gas power systems using new optimized FOFPID controller and redox flow batteries," Energy, Elsevier, vol. 127(C), pages 704-715.
    3. Chaudhary, Aniket Karan & Roy, Satyabrata & Guha, Dipayan & Negi, Richa & Banerjee, Subrata, 2024. "Adaptive cyber-tolerant finite-time frequency control framework for renewable-integrated power system under deception and periodic denial-of-service attacks," Energy, Elsevier, vol. 302(C).
    4. Mitul Ranjan Chakraborty & Subhojit Dawn & Pradip Kumar Saha & Jayanta Bhusan Basu & Taha Selim Ustun, 2022. "System Profit Improvement of a Thermal–Wind–CAES Hybrid System Considering Imbalance Cost in the Electricity Market," Energies, MDPI, vol. 15(24), pages 1-25, December.
    5. Ajay Kumar & Deepak Kumar Gupta & Sriparna Roy Ghatak & Bhargav Appasani & Nicu Bizon & Phatiphat Thounthong, 2022. "A Novel Improved GSA-BPSO Driven PID Controller for Load Frequency Control of Multi-Source Deregulated Power System," Mathematics, MDPI, vol. 10(18), pages 1-41, September.
    6. Mitul Ranjan Chakraborty & Subhojit Dawn & Pradip Kumar Saha & Jayanta Bhusan Basu & Taha Selim Ustun, 2023. "System Economy Improvement and Risk Shortening by Fuel Cell-UPFC Placement in a Wind-Combined System," Energies, MDPI, vol. 16(4), pages 1-30, February.
    7. Dhundhara, Sandeep & Verma, Yajvender Pal, 2018. "Capacitive energy storage with optimized controller for frequency regulation in realistic multisource deregulated power system," Energy, Elsevier, vol. 147(C), pages 1108-1128.
    8. Colmenar-Santos, Antonio & Molina-Ibáñez, Enrique-Luis & Rosales-Asensio, Enrique & Blanes-Peiró, Jorge-Juan, 2018. "Legislative and economic aspects for the inclusion of energy reserve by a superconducting magnetic energy storage: Application to the case of the Spanish electrical system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2455-2470.
    9. Balvender Singh & Adam Slowik & Shree Krishan Bishnoi, 2023. "Review on Soft Computing-Based Controllers for Frequency Regulation of Diverse Traditional, Hybrid, and Future Power Systems," Energies, MDPI, vol. 16(4), pages 1-30, February.
    10. Xu, Ying & Ren, Li & Zhang, Zhongping & Tang, Yuejin & Shi, Jing & Xu, Chen & Li, Jingdong & Pu, Dongsheng & Wang, Zhuang & Liu, Huajun & Chen, Lei, 2018. "Analysis of the loss and thermal characteristics of a SMES (Superconducting Magnetic Energy Storage) magnet with three practical operating conditions," Energy, Elsevier, vol. 143(C), pages 372-384.
    11. Narendra Kumar Jena & Subhadra Sahoo & Binod Kumar Sahu & Amiya Kumar Naik & Mohit Bajaj & Stanislav Misak & Vojtech Blazek & Lukas Prokop, 2023. "Impact of a Redox Flow Battery on the Frequency Stability of a Five-Area System Integrated with Renewable Sources," Energies, MDPI, vol. 16(14), pages 1-29, July.
    12. Hassan Haes Alhelou & Mohamad-Esmail Hamedani-Golshan & Reza Zamani & Ehsan Heydarian-Forushani & Pierluigi Siano, 2018. "Challenges and Opportunities of Load Frequency Control in Conventional, Modern and Future Smart Power Systems: A Comprehensive Review," Energies, MDPI, vol. 11(10), pages 1-35, September.
    13. Hossam Hassan Ali & Ahmed Fathy & Abdullah M. Al-Shaalan & Ahmed M. Kassem & Hassan M. H. Farh & Abdullrahman A. Al-Shamma’a & Hossam A. Gabbar, 2021. "A Novel Sooty Terns Algorithm for Deregulated MPC-LFC Installed in Multi-Interconnected System with Renewable Energy Plants," Energies, MDPI, vol. 14(17), pages 1-27, August.
    14. Jicheng Liu & Dandan He, 2018. "Profit Allocation of Hybrid Power System Planning in Energy Internet: A Cooperative Game Study," Sustainability, MDPI, vol. 10(2), pages 1-19, February.
    15. Hemmati, Reza & Saboori, Hedayat & Saboori, Saeid, 2016. "Stochastic risk-averse coordinated scheduling of grid integrated energy storage units in transmission constrained wind-thermal systems within a conditional value-at-risk framework," Energy, Elsevier, vol. 113(C), pages 762-775.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:97:y:2016:i:c:p:214-228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.