Power density optimization for micro thermoelectric generators
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2015.10.032
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wang, Chien-Chang & Hung, Chen-I & Chen, Wei-Hsin, 2012. "Design of heat sink for improving the performance of thermoelectric generator using two-stage optimization," Energy, Elsevier, vol. 39(1), pages 236-245.
- Meng, Jing-Hui & Zhang, Xin-Xin & Wang, Xiao-Dong, 2014. "Multi-objective and multi-parameter optimization of a thermoelectric generator module," Energy, Elsevier, vol. 71(C), pages 367-376.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ravi Anant Kishore & Roop L. Mahajan & Shashank Priya, 2018. "Combinatory Finite Element and Artificial Neural Network Model for Predicting Performance of Thermoelectric Generator," Energies, MDPI, vol. 11(9), pages 1-17, August.
- Amit Tanwar & Swatchith Lal & Kafil M. Razeeb, 2021. "Structural Design Optimization of Micro-Thermoelectric Generator for Wearable Biomedical Devices," Energies, MDPI, vol. 14(8), pages 1-13, April.
- Su, Ning & Zhu, Pengfei & Pan, Yuhui & Li, Fu & Li, Bo, 2020. "3D-printing of shape-controllable thermoelectric devices with enhanced output performance," Energy, Elsevier, vol. 195(C).
- Ssennoga Twaha & Jie Zhu & Luqman Maraaba & Kuo Huang & Bo Li & Yuying Yan, 2017. "Maximum Power Point Tracking Control of a Thermoelectric Generation System Using the Extremum Seeking Control Method," Energies, MDPI, vol. 10(12), pages 1-18, December.
- Siddique, Abu Raihan Mohammad & Rabari, Ronil & Mahmud, Shohel & Heyst, Bill Van, 2016. "Thermal energy harvesting from the human body using flexible thermoelectric generator (FTEG) fabricated by a dispenser printing technique," Energy, Elsevier, vol. 115(P1), pages 1081-1091.
- Mirhosseini, Mojtaba & Rezania, Alireza & Rosendahl, Lasse, 2019. "Harvesting waste heat from cement kiln shell by thermoelectric system," Energy, Elsevier, vol. 168(C), pages 358-369.
- Nozariasbmarz, Amin & Collins, Henry & Dsouza, Kelvin & Polash, Mobarak Hossain & Hosseini, Mahshid & Hyland, Melissa & Liu, Jie & Malhotra, Abhishek & Ortiz, Francisco Matos & Mohaddes, Farzad & Rame, 2020. "Review of wearable thermoelectric energy harvesting: From body temperature to electronic systems," Applied Energy, Elsevier, vol. 258(C).
- Da, Yun & Xuan, Yimin & Li, Qiang, 2016. "From light trapping to solar energy utilization: A novel photovoltaic–thermoelectric hybrid system to fully utilize solar spectrum," Energy, Elsevier, vol. 95(C), pages 200-210.
- Shittu, Samson & Li, Guiqiang & Zhao, Xudong & Ma, Xiaoli, 2020. "Review of thermoelectric geometry and structure optimization for performance enhancement," Applied Energy, Elsevier, vol. 268(C).
- Karami Rad, Meysam & Rezania, Alireza & Omid, Mahmoud & Rajabipour, Ali & Rosendahl, Lasse, 2019. "Study on material properties effect for maximization of thermoelectric power generation," Renewable Energy, Elsevier, vol. 138(C), pages 236-242.
- Zuo, Wei & E, Jiaqiang & Hu, Wenyu & Jin, Yu & Han, Dandan, 2017. "Numerical investigations on combustion characteristics of H2/air premixed combustion in a micro elliptical tube combustor," Energy, Elsevier, vol. 126(C), pages 1-12.
- E, Jiaqiang & Luo, Bo & Han, Dandan & Chen, Jingwei & Liao, Gaoliang & Zhang, Feng & Ding, Jiangjun, 2022. "A comprehensive review on performance improvement of micro energy mechanical system: Heat transfer, micro combustion and energy conversion," Energy, Elsevier, vol. 239(PE).
- Mohammad Siddique, Abu Raihan & Mahmud, Shohel & Van Heyst, Bill, 2020. "Performance comparison between rectangular and trapezoidal-shaped thermoelectric legs manufactured by a dispenser printing technique," Energy, Elsevier, vol. 196(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Wei-Hsin & Huang, Shih-Rong & Lin, Yu-Li, 2015. "Performance analysis and optimum operation of a thermoelectric generator by Taguchi method," Applied Energy, Elsevier, vol. 158(C), pages 44-54.
- Liu, Zhichun & Zhu, Shiping & Ge, Ya & Shan, Feng & Zeng, Lingping & Liu, Wei, 2017. "Geometry optimization of two-stage thermoelectric generators using simplified conjugate-gradient method," Applied Energy, Elsevier, vol. 190(C), pages 540-552.
- Arora, Ranjana & Kaushik, S.C. & Arora, Rajesh, 2015. "Multi-objective and multi-parameter optimization of two-stage thermoelectric generator in electrically series and parallel configurations through NSGA-II," Energy, Elsevier, vol. 91(C), pages 242-254.
- Luo, Yang & Li, Linlin & Chen, Yiping & Kim, Chang Nyung, 2022. "Influence of geometric parameter and contact resistances on the thermal-electric behavior of a segmented TEG," Energy, Elsevier, vol. 254(PC).
- Lee, HoSung, 2013. "Optimal design of thermoelectric devices with dimensional analysis," Applied Energy, Elsevier, vol. 106(C), pages 79-88.
- Ge, Ya & Liu, Zhichun & Sun, Henan & Liu, Wei, 2018. "Optimal design of a segmented thermoelectric generator based on three-dimensional numerical simulation and multi-objective genetic algorithm," Energy, Elsevier, vol. 147(C), pages 1060-1069.
- Mustafa, K.F. & Abdullah, S. & Abdullah, M.Z. & Sopian, K. & Ismail, A.K., 2015. "Experimental investigation of the performance of a liquid fuel-fired porous burner operating on kerosene-vegetable cooking oil (VCO) blends for micro-cogeneration of thermoelectric power," Renewable Energy, Elsevier, vol. 74(C), pages 505-516.
- Sun, Henan & Ge, Ya & Liu, Wei & Liu, Zhichun, 2019. "Geometric optimization of two-stage thermoelectric generator using genetic algorithms and thermodynamic analysis," Energy, Elsevier, vol. 171(C), pages 37-48.
- Kwan, Trevor Hocksun & Wu, Xiaofeng & Yao, Qinghe, 2018. "Multi-objective genetic optimization of the thermoelectric system for thermal management of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 217(C), pages 314-327.
- Liu, Hai-Bo & Wang, Shuo-Lin & Yang, Yan-Ru & Chen, Wei-Hsin & Wang, Xiao-Dong, 2020. "Theoretical analysis of performance of variable cross-section thermoelectric generators: Effects of shape factor and thermal boundary conditions," Energy, Elsevier, vol. 201(C).
- He, Wei & Wang, Shixue & Zhang, Xing & Li, Yanzhe & Lu, Chi, 2015. "Optimization design method of thermoelectric generator based on exhaust gas parameters for recovery of engine waste heat," Energy, Elsevier, vol. 91(C), pages 1-9.
- Meng, Jing-Hui & Wang, Xiao-Dong & Zhang, Xin-Xin, 2013. "Transient modeling and dynamic characteristics of thermoelectric cooler," Applied Energy, Elsevier, vol. 108(C), pages 340-348.
- Tian, Hua & Sun, Xiuxiu & Jia, Qi & Liang, Xingyu & Shu, Gequn & Wang, Xu, 2015. "Comparison and parameter optimization of a segmented thermoelectric generator by using the high temperature exhaust of a diesel engine," Energy, Elsevier, vol. 84(C), pages 121-130.
- Cai, Yeyun & Ding, Ning & Rezania, A. & Deng, Fang & Rosendahl, L. & Chen, Jie, 2023. "A multi-objective optimization in system level for thermoelectric generation system," Energy, Elsevier, vol. 281(C).
- Ge, Ya & He, Kui & Xiao, Liehui & Yuan, Wuzhi & Huang, Si-Min, 2022. "Geometric optimization for the thermoelectric generator with variable cross-section legs by coupling finite element method and optimization algorithm," Renewable Energy, Elsevier, vol. 183(C), pages 294-303.
- Ge, Minghui & Zhao, Yuntong & Li, Yanzhe & He, Wei & Xie, Liyao & Zhao, Yulong, 2022. "Structural optimization of thermoelectric modules in a concentration photovoltaic–thermoelectric hybrid system," Energy, Elsevier, vol. 244(PB).
- Abdelrahman Lashin & Mohammad Al Turkestani & Mohamed Sabry, 2020. "Performance of a Thermoelectric Generator Partially Illuminated with Highly Concentrated Light," Energies, MDPI, vol. 13(14), pages 1-12, July.
- Sahin, Ahmet Z. & Yilbas, Bekir S., 2013. "Thermodynamic irreversibility and performance characteristics of thermoelectric power generator," Energy, Elsevier, vol. 55(C), pages 899-904.
- Jing-Hui Meng & Hao-Chi Wu & Tian-Hu Wang, 2019. "Optimization of Two-Stage Combined Thermoelectric Devices by a Three-Dimensional Multi-Physics Model and Multi-Objective Genetic Algorithm," Energies, MDPI, vol. 12(14), pages 1-24, July.
- Martínez, A. & Astrain, D. & Rodríguez, A., 2013. "Dynamic model for simulation of thermoelectric self cooling applications," Energy, Elsevier, vol. 55(C), pages 1114-1126.
More about this item
Keywords
Micro thermoelectric generators; Power density optimization; Waste heat recovery; Energy scavenging; Thermoelectric figure of merit;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:93:y:2015:i:p2:p:2006-2017. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.