IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v86y2015icp240-246.html
   My bibliography  Save this article

The heat transfer coefficient of new construction – Brick masonry with fly ash blocks

Author

Listed:
  • Li, Jianhua
  • Cao, Wanlin
  • Chen, Guoxin

Abstract

This paper presents a study of the heat transfer characteristics of new construction - brick masonry with fly ash blocks. Four forms of wall samples were tested to evaluate their heat transfer performance. Based on the mechanism of the thermal conductivity of clay bricks, RCB (recycled concrete bricks) and fly ash blocks, an actual value calculation method for determining the heat transfer coefficient suitable for engineering design was proposed. By analyzing and comparing the experimental values with the theoretical and actual values of the test samples, the proposed method was proved to be reasonably correct; it used RCB instead of ordinary clay bricks and a composite wall with fly ash blocks showed an enhanced insulation effect. New construction of brick masonry with fly ash blocks not only is good for the environment, but also provides good thermal insulation.

Suggested Citation

  • Li, Jianhua & Cao, Wanlin & Chen, Guoxin, 2015. "The heat transfer coefficient of new construction – Brick masonry with fly ash blocks," Energy, Elsevier, vol. 86(C), pages 240-246.
  • Handle: RePEc:eee:energy:v:86:y:2015:i:c:p:240-246
    DOI: 10.1016/j.energy.2015.04.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421500479X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.04.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Liu & Lam, Joseph C. & Tsang, C.L., 2008. "Energy performance of building envelopes in different climate zones in China," Applied Energy, Elsevier, vol. 85(9), pages 800-817, September.
    2. Li, Baizhan & Yao, Runming, 2009. "Urbanisation and its impact on building energy consumption and efficiency in China," Renewable Energy, Elsevier, vol. 34(9), pages 1994-1998.
    3. Fokaides, Paris A. & Kalogirou, Soteris A., 2011. "Application of infrared thermography for the determination of the overall heat transfer coefficient (U-Value) in building envelopes," Applied Energy, Elsevier, vol. 88(12), pages 4358-4365.
    4. Nils Kok & Marquise McGraw & John M. Quigley, 2011. "The Diffusion of Energy Efficiency in Building," American Economic Review, American Economic Association, vol. 101(3), pages 77-82, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Fenghai & Liu, Quanrun & Li, Meng & Fang, Yitian, 2018. "Understanding fly-ash formation during fluidized-bed gasification of high-silicon-aluminum coal based on its characteristics," Energy, Elsevier, vol. 150(C), pages 142-152.
    2. Kočí, Václav & Kočí, Jan & Maděra, Jiří & Černý, Robert, 2016. "Contribution of waste products in single-layer ceramic building envelopes to overall energy savings," Energy, Elsevier, vol. 111(C), pages 947-955.
    3. Wang, Yiping & Fu, Hailing & Huang, Qunwu & Cui, Yong & Sun, Yong & Jiang, Lihong, 2015. "Experimental study of direct contact vaporization heat transfer on n-pentane-water flowing interface," Energy, Elsevier, vol. 93(P1), pages 854-863.
    4. Kyriakidis, A. & Michael, A. & Illampas, R. & Charmpis, D.C. & Ioannou, I., 2019. "Comparative evaluation of a novel environmentally responsive modular wall system based on integrated quantitative and qualitative criteria," Energy, Elsevier, vol. 188(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Bao-jie & Yang, Li & Griffy-Brown, Charla & Mou, Ben & Zhou, Ya-Nan & Ye, Miao, 2014. "The assessment of building energy efficiency in China rural society: Developing a new theoretical construct," Technology in Society, Elsevier, vol. 38(C), pages 130-138.
    2. Wang, Jiangjiang & Zhai, Zhiqiang (John) & Jing, Youyin & Zhang, Chunfa, 2011. "Influence analysis of building types and climate zones on energetic, economic and environmental performances of BCHP systems," Applied Energy, Elsevier, vol. 88(9), pages 3097-3112.
    3. Kylili, Angeliki & Fokaides, Paris A. & Christou, Petros & Kalogirou, Soteris A., 2014. "Infrared thermography (IRT) applications for building diagnostics: A review," Applied Energy, Elsevier, vol. 134(C), pages 531-549.
    4. Fokaides, Paris A. & Jurelionis, Andrius & Gagyte, Laura & Kalogirou, Soteris A., 2016. "Mock target IR thermography for indoor air temperature measurement," Applied Energy, Elsevier, vol. 164(C), pages 676-685.
    5. Luca Evangelisti & Leone Barbaro & Claudia Guattari & Edoardo De Cristo & Roberto De Lieto Vollaro & Francesco Asdrubali, 2024. "Comparison between Direct and Indirect Heat Flux Measurement Techniques: Preliminary Laboratory Tests," Energies, MDPI, vol. 17(12), pages 1-16, June.
    6. Costanzo, Vincenzo & Yao, Runming & Xu, Tiantian & Xiong, Jie & Zhang, Qiulei & Li, Baizhan, 2019. "Natural ventilation potential for residential buildings in a densely built-up and highly polluted environment. A case study," Renewable Energy, Elsevier, vol. 138(C), pages 340-353.
    7. Chegut, Andrea & Eichholtz, Piet & Kok, Nils, 2019. "The price of innovation: An analysis of the marginal cost of green buildings," Journal of Environmental Economics and Management, Elsevier, vol. 98(C).
    8. Jiang-Jiang, Wang & Chun-Fa, Zhang & You-Yin, Jing, 2010. "Multi-criteria analysis of combined cooling, heating and power systems in different climate zones in China," Applied Energy, Elsevier, vol. 87(4), pages 1247-1259, April.
    9. Dong Jichang & He Jing & Li Xiuting & Mou Xindi & Dong Zhi, 2020. "The Effect of Industrial Structure Change on Carbon Dioxide Emissions: A Cross-Country Panel Analysis," Journal of Systems Science and Information, De Gruyter, vol. 8(1), pages 1-16, February.
    10. Zhang, Li & Wu, Jing & Liu, Hongyu, 2018. "Policies to enhance the drivers of green housing development in China," Energy Policy, Elsevier, vol. 121(C), pages 225-235.
    11. Yana Akhtyrska & Franz Fuerst, 2021. "People or Systems: Does Productivity Enhancement Matter More than Energy Management in LEED Certified Buildings?," Sustainability, MDPI, vol. 13(24), pages 1-35, December.
    12. Seyedmohammadreza Heibati & Wahid Maref & Hamed H. Saber, 2019. "Assessing the Energy and Indoor Air Quality Performance for a Three-Story Building Using an Integrated Model, Part One: The Need for Integration," Energies, MDPI, vol. 12(24), pages 1-18, December.
    13. Blanca Tejedor & Eva Barreira & Vasco Peixoto de Freitas & Tomasz Kisilewicz & Katarzyna Nowak-Dzieszko & Umberto Berardi, 2020. "Impact of Stationary and Dynamic Conditions on the U-Value Measurements of Heavy-Multi Leaf Walls by Quantitative IRT," Energies, MDPI, vol. 13(24), pages 1-19, December.
    14. Tian, Shuai & Yang, Guoqiang & Du, Sihong & Zhuang, Dian & Zhu, Ke & Zhou, Xin & Jin, Xing & Ye, Yu & Li, Peixian & Shi, Xing, 2024. "An innovative method for evaluating the urban roof photovoltaic potential based on open-source satellite images," Renewable Energy, Elsevier, vol. 224(C).
    15. Doo Sung Choi & Myeong Jin Ko, 2017. "Comparison of Various Analysis Methods Based on Heat Flowmeters and Infrared Thermography Measurements for the Evaluation of the In Situ Thermal Transmittance of Opaque Exterior Walls," Energies, MDPI, vol. 10(7), pages 1-22, July.
    16. Rasooli, Arash & Itard, Laure, 2019. "In-situ rapid determination of walls’ thermal conductivity, volumetric heat capacity, and thermal resistance, using response factors," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    17. Yu, Sha & Eom, Jiyong & Evans, Meredydd & Clarke, Leon, 2014. "A long-term, integrated impact assessment of alternative building energy code scenarios in China," Energy Policy, Elsevier, vol. 67(C), pages 626-639.
    18. Bienvenido-Huertas, David & Moyano, Juan & Rodríguez-Jiménez, Carlos E. & Marín, David, 2019. "Applying an artificial neural network to assess thermal transmittance in walls by means of the thermometric method," Applied Energy, Elsevier, vol. 233, pages 1-14.
    19. He, Jia & Wu, Jing, 2016. "Doing well by doing good? The case of housing construction quality in China," Regional Science and Urban Economics, Elsevier, vol. 57(C), pages 46-53.
    20. Suvrat Dhanorkar & Enno Siemsen, 2021. "How Nudges Lead to Improved Energy Efficiency in Manufacturing: Evidence from Archival Data and a Field Study," Production and Operations Management, Production and Operations Management Society, vol. 30(10), pages 3735-3757, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:86:y:2015:i:c:p:240-246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.