IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v81y2015icp645-651.html
   My bibliography  Save this article

Analytical optimization of constructal channels used for cooling a ring shaped body based on minimum flow and thermal resistances

Author

Listed:
  • Salimpour, Mohammad Reza
  • Menbari, Amir

Abstract

Constructal theory is invoked to optimize a dendritic path flow structure for minimizing overall flow and thermal resistances. Convective cooling of a ring-shaped body is the aim of this investigation. The construct of flow paths is Y-tree shaped; while the body has heat generation over the area, uniformly. Cooling is done by a single-phase coolant entering through ports located equidistantly along the internal perimeter or enters through the center (when internal radius of convoluted disc-shaped body is zero), and exits through ports located equidistantly along the external perimeter. The regime of fluid flow is laminar and fully developed. The degrees of freedom are the ratio diameters and lengths of ducts. The constraints are the disc size (external radius is fixed) and the total volume of ducts devised in disc. The aim of design is to obtain the best construct, so that two resistances i.e. flow resistance and thermal resistance are minimized. Results show that the mass flow rate has the greatest effect on thermal resistance, but the effect of mass flow rate on flow resistance is negligible. Moreover, it is seen that at high values of pumping power, increasing complexity (more levels of pairing) results in reducing the thermal resistance.

Suggested Citation

  • Salimpour, Mohammad Reza & Menbari, Amir, 2015. "Analytical optimization of constructal channels used for cooling a ring shaped body based on minimum flow and thermal resistances," Energy, Elsevier, vol. 81(C), pages 645-651.
  • Handle: RePEc:eee:energy:v:81:y:2015:i:c:p:645-651
    DOI: 10.1016/j.energy.2015.01.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215000158
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.01.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huijun Feng & Lingen Chen & Zhihui Xie & Fengrui Sun, 2015. "Constructal optimization of a disc-shaped body with cooling channels for specified power pumping," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 10(3), pages 229-237.
    2. Feng, Huijun & Chen, Lingen & Xie, Zhihui & Ding, Zemin & Sun, Fengrui, 2014. "Generalized constructal optimization for solidification heat transfer process of slab continuous casting based on heat loss rate," Energy, Elsevier, vol. 66(C), pages 991-998.
    3. Salimpour, Mohammad Reza & Menbari, Amir, 2014. "Constructal design of cooling channels embedded in a ring-shaped heat-generating body," Energy, Elsevier, vol. 73(C), pages 302-310.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng, Huijun & Xie, Zhuojun & Chen, Lingen & Wu, Zhixiang & Xia, Shaojun, 2020. "Constructal design for supercharged boiler superheater," Energy, Elsevier, vol. 191(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Huijun & Xie, Zhuojun & Chen, Lingen & Wu, Zhixiang & Xia, Shaojun, 2020. "Constructal design for supercharged boiler superheater," Energy, Elsevier, vol. 191(C).
    2. Hu, Xianzhong & Yu, Qingbo, 2018. "Effect of the elevated initial temperature on the laminar flame speeds of oxy-methane mixtures," Energy, Elsevier, vol. 147(C), pages 876-883.
    3. Sun, Yongqi & Seetharaman, Seshadri & Liu, Qianyi & Zhang, Zuotai & Liu, Lili & Wang, Xidong, 2016. "Integrated biomass gasification using the waste heat from hot slags: Control of syngas and polluting gas releases," Energy, Elsevier, vol. 114(C), pages 165-176.
    4. Liu, Xiong & Feng, Huijun & Chen, Lingen & Qin, Xiaoyong & Sun, Fengrui, 2016. "Hot metal yield optimization of a blast furnace based on constructal theory," Energy, Elsevier, vol. 104(C), pages 33-41.
    5. Tang, Wei & Feng, Huijun & Chen, Lingen & Xie, Zhuojun & Shi, Junchao, 2021. "Constructal design for a boiler economizer," Energy, Elsevier, vol. 223(C).
    6. Liu, Xiong & Chen, Lingen & Feng, Huijun & Qin, Xiaoyong & Sun, Fengrui, 2016. "Constructal design of a blast furnace iron-making process based on multi-objective optimization," Energy, Elsevier, vol. 109(C), pages 137-151.
    7. Liu, Changxin & Xie, Zhihui & Sun, Fengrui & Chen, Lingen, 2017. "Exergy analysis and optimization of coking process," Energy, Elsevier, vol. 139(C), pages 694-705.
    8. Feng, Huijun & Chen, Lingen & Xie, Zhihui & Sun, Fengrui, 2015. "“Disc-point” heat and mass transfer constructal optimization for solid–gas reactors based on entropy generation minimization," Energy, Elsevier, vol. 83(C), pages 431-437.
    9. Pantula, Priyanka D. & Mitra, Kishalay, 2019. "A data-driven approach towards finding closer estimates of optimal solutions under uncertainty for an energy efficient steel casting process," Energy, Elsevier, vol. 189(C).
    10. Gong, Changming & Si, Xiankai & Wang, Kang & Wei, Fuxing & Liu, Fenghua, 2018. "Numerical analysis of carbon monoxide, formaldehyde and unburned methanol emissions with ozone addition from a direct-injection spark-ignition methanol engine," Energy, Elsevier, vol. 144(C), pages 432-442.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:81:y:2015:i:c:p:645-651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.