IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v80y2015icp740-745.html
   My bibliography  Save this article

An experimental study of the dynamic behavior of a 2 kW proton exchange membrane fuel cell stack under various loading conditions

Author

Listed:
  • Jian, Qifei
  • Zhao, Yang
  • Wang, Haoting

Abstract

The dynamic behavior of the PEM (proton exchange membrane) fuel cell stack has great effect on the safety and effective operation of its applications. In this paper, a self-designed bulb-array is used to simulate the various loading conditions and study the dynamic behavior of a 2 kW PEM fuel cell stack. An evaluation index, including oscillation rate, pressure variation and dynamic resistance factor, is used to analyze the transient response of the PEM fuel cell stack. It is observed that the stack current increases about 8.6%, and the Oscillation rate decreases more rapidly after activation. In the step-up load stage, the oscillation rate and the dynamic resistance decrease more rapidly as the external load increases. Due to the periodic anodic purge process, a periodic voltage fluctuation can be seen. In addition, when the stack works in the open-loop state (working without the external load), the transient response of the stack current is significantly affected by the hydrogen humidity and the charge double-layer.

Suggested Citation

  • Jian, Qifei & Zhao, Yang & Wang, Haoting, 2015. "An experimental study of the dynamic behavior of a 2 kW proton exchange membrane fuel cell stack under various loading conditions," Energy, Elsevier, vol. 80(C), pages 740-745.
  • Handle: RePEc:eee:energy:v:80:y:2015:i:c:p:740-745
    DOI: 10.1016/j.energy.2014.12.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214013905
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.12.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Wei & Tao, Jiabo & Yu, Xinhai & Zhao, Shuangliang & Tu, Shan-Tung & Liu, Honglai, 2017. "A microreactor with superhydrophobic Pt–Al2O3 catalyst coating concerning oxidation of hydrogen off-gas from fuel cell," Applied Energy, Elsevier, vol. 185(P2), pages 1233-1244.
    2. Chen, Ben & Ke, Wandi & Luo, Maji & Wang, Jun & Tu, Zhengkai & Pan, Mu & Zhang, Haining & Liu, Xiaowei & Liu, Wei, 2015. "Operation characteristics and carbon corrosion of PEMFC (Proton exchange membrane fuel cell) with dead-ended anode for high hydrogen utilization," Energy, Elsevier, vol. 91(C), pages 799-806.
    3. Hedayati, Ali & Le Corre, Olivier & Lacarrière, Bruno & Llorca, Jordi, 2016. "Dynamic simulation of pure hydrogen production via ethanol steam reforming in a catalytic membrane reactor," Energy, Elsevier, vol. 117(P2), pages 316-324.
    4. Oh, Taek Hyun & Jang, Bosun & Kwon, Sejin, 2015. "Estimating the energy density of direct borohydride–hydrogen peroxide fuel cell systems for air-independent propulsion applications," Energy, Elsevier, vol. 90(P1), pages 980-986.
    5. Zeng, Tao & Zhang, Caizhi & Zhou, Anjian & Wu, Qi & Deng, Chenghao & Chan, Siew Hwa & Chen, Jinrui & Foley, Aoife M., 2021. "Enhancing reactant mass transfer inside fuel cells to improve dynamic performance via intelligent hydrogen pressure control," Energy, Elsevier, vol. 230(C).
    6. Barzegari, Mohammad M. & Dardel, Morteza & Alizadeh, Ebrahim & Ramiar, Abas, 2016. "Reduced-order model of cascade-type PEM fuel cell stack with integrated humidifiers and water separators," Energy, Elsevier, vol. 113(C), pages 683-692.
    7. Bai, Xingying & Luo, Lizhong & Huang, Bi & Jian, Qifei & Cheng, Zongyi, 2022. "Performance improvement of proton exchange membrane fuel cell stack by dual-path hydrogen supply," Energy, Elsevier, vol. 246(C).
    8. Zhang, Caizhi & Liu, Zhitao & Zhou, Weijiang & Chan, Siew Hwa & Wang, Youyi, 2015. "Dynamic performance of a high-temperature PEM fuel cell – An experimental study," Energy, Elsevier, vol. 90(P2), pages 1949-1955.
    9. Meng, Kai & Zhou, Haoran & Chen, Ben & Tu, Zhengkai, 2021. "Dynamic current cycles effect on the degradation characteristic of a H2/O2 proton exchange membrane fuel cell," Energy, Elsevier, vol. 224(C).
    10. Spallina, V. & Matturro, G. & Ruocco, C. & Meloni, E. & Palma, V. & Fernandez, E. & Melendez, J. & Pacheco Tanaka, A.D. & Viviente Sole, J.L. & van Sint Annaland, M. & Gallucci, F., 2018. "Direct route from ethanol to pure hydrogen through autothermal reforming in a membrane reactor: Experimental demonstration, reactor modelling and design," Energy, Elsevier, vol. 143(C), pages 666-681.
    11. Kurnia, Jundika C. & Sasmito, Agus P. & Shamim, Tariq, 2019. "Advances in proton exchange membrane fuel cell with dead-end anode operation: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    12. Oh, Taek Hyun, 2016. "A formic acid hydrogen generator using Pd/C3N4 catalyst for mobile proton exchange membrane fuel cell systems," Energy, Elsevier, vol. 112(C), pages 679-685.
    13. Zhiani, Mohammad & Majidi, Somayeh & Silva, Valter Bruno & Gharibi, Hussein, 2016. "Comparison of the performance and EIS (electrochemical impedance spectroscopy) response of an activated PEMFC (proton exchange membrane fuel cell) under low and high thermal and pressure stresses," Energy, Elsevier, vol. 97(C), pages 560-567.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:80:y:2015:i:c:p:740-745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.