IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v75y2014icp463-473.html
   My bibliography  Save this article

Applying analytics in the energy industry: A case study of heat rate and opacity prediction in a coal-fired power plant

Author

Listed:
  • Chongwatpol, Jongsawas
  • Phurithititanapong, Thanrawee

Abstract

Power producers are looking for ways not only to improve the efficiency of power plant assets but also to alleviate concerns about the environmental impact of power generation without compromising their market competitiveness. To meet this challenge, advanced analytics through data mining approaches has been applied to predict and explain the leading causes of variation in heat rates and the opacity of the flue gas exhaust emissions, which are key factors in measuring the overall efficiency of the power plant. The results from a case study from a coal-fired power plant in Thailand demonstrate the practical validity of our approaches. The key finding contributes to identifying parameters that are the key determinants of excessive heat rates and opacity levels. Thus, corrective and preventive actions related to those parameters can be regularly evaluated and monitored.

Suggested Citation

  • Chongwatpol, Jongsawas & Phurithititanapong, Thanrawee, 2014. "Applying analytics in the energy industry: A case study of heat rate and opacity prediction in a coal-fired power plant," Energy, Elsevier, vol. 75(C), pages 463-473.
  • Handle: RePEc:eee:energy:v:75:y:2014:i:c:p:463-473
    DOI: 10.1016/j.energy.2014.08.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214009384
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.08.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Atmaca, Ediz & Basar, Hasan Burak, 2012. "Evaluation of power plants in Turkey using Analytic Network Process (ANP)," Energy, Elsevier, vol. 44(1), pages 555-563.
    2. Xu, Gang & Yang, Yong-ping & Lu, Shi-yuan & Li, Le & Song, Xiaona, 2011. "Comprehensive evaluation of coal-fired power plants based on grey relational analysis and analytic hierarchy process," Energy Policy, Elsevier, vol. 39(5), pages 2343-2351, May.
    3. Sueyoshi, Toshiyuki & Goto, Mika, 2013. "Returns to scale vs. damages to scale in data envelopment analysis: An impact of U.S. clean air act on coal-fired power plants," Omega, Elsevier, vol. 41(2), pages 164-175.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olawale Ogunrinde & Ekundayo Shittu, 2023. "Benchmarking performance of photovoltaic power plants in multiple periods," Environment Systems and Decisions, Springer, vol. 43(3), pages 489-503, September.
    2. Li, Jianglong & Lin, Boqiang, 2017. "Does energy and CO2 emissions performance of China benefit from regional integration?," Energy Policy, Elsevier, vol. 101(C), pages 366-378.
    3. Alkan, Ömer & Albayrak, Özlem Karadağ, 2020. "Ranking of renewable energy sources for regions in Turkey by fuzzy entropy based fuzzy COPRAS and fuzzy MULTIMOORA," Renewable Energy, Elsevier, vol. 162(C), pages 712-726.
    4. Sueyoshi, Toshiyuki & Goto, Mika, 2015. "Environmental assessment on coal-fired power plants in U.S. north-east region by DEA non-radial measurement," Energy Economics, Elsevier, vol. 50(C), pages 125-139.
    5. Nadimi, Reza & Tokimatsu, Koji, 2019. "Potential energy saving via overall efficiency relying on quality of life," Applied Energy, Elsevier, vol. 233, pages 283-299.
    6. Sueyoshi, Toshiyuki & Goto, Mika, 2014. "Investment strategy for sustainable society by development of regional economies and prevention of industrial pollutions in Japanese manufacturing sectors," Energy Economics, Elsevier, vol. 42(C), pages 299-312.
    7. Haddad, Brahim & Liazid, Abdelkrim & Ferreira, Paula, 2017. "A multi-criteria approach to rank renewables for the Algerian electricity system," Renewable Energy, Elsevier, vol. 107(C), pages 462-472.
    8. Assadi, Mohammad Reza & Ataebi, Melikasadat & Ataebi, Elmira sadat & Hasani, Aliakbar, 2022. "Prioritization of renewable energy resources based on sustainable management approach using simultaneous evaluation of criteria and alternatives: A case study on Iran's electricity industry," Renewable Energy, Elsevier, vol. 181(C), pages 820-832.
    9. Adel Hatami-Marbini & Zahra Ghelej Beigi & Jens Leth Hougaard & Kobra Gholami, 2014. "Estimating Returns to Scale in Imprecise Data Envelopment Analysis," MSAP Working Paper Series 07_2014, University of Copenhagen, Department of Food and Resource Economics.
    10. Li, Jiaxin & Wang, Zihan & Cheng, Xin & Shuai, Jing & Shuai, Chuanmin & Liu, Jing, 2020. "Has solar PV achieved the national poverty alleviation goals? Empirical evidence from the performances of 52 villages in rural China," Energy, Elsevier, vol. 201(C).
    11. Alizadeh, Reza & Gharizadeh Beiragh, Ramin & Soltanisehat, Leili & Soltanzadeh, Elham & Lund, Peter D., 2020. "Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach," Energy Economics, Elsevier, vol. 91(C).
    12. Dianfa Wu & Zhiping Yang & Ningling Wang & Chengzhou Li & Yongping Yang, 2018. "An Integrated Multi-Criteria Decision Making Model and AHP Weighting Uncertainty Analysis for Sustainability Assessment of Coal-Fired Power Units," Sustainability, MDPI, vol. 10(6), pages 1-27, May.
    13. Sueyoshi, Toshiyuki & Goto, Mika, 2017. "Measurement of returns to scale on large photovoltaic power stations in the United States and Germany," Energy Economics, Elsevier, vol. 64(C), pages 306-320.
    14. Lei Xiong & Cheng-Lein Teng & Bo-Wei Zhu & Gwo-Hshiung Tzeng & Shan-Lin Huang, 2017. "Using the D-DANP-mV Model to Explore the Continuous System Improvement Strategy for Sustainable Development of Creative Communities," IJERPH, MDPI, vol. 14(11), pages 1-37, October.
    15. Sueyoshi, Toshiyuki & Goto, Mika, 2014. "Photovoltaic power stations in Germany and the United States: A comparative study by data envelopment analysis," Energy Economics, Elsevier, vol. 42(C), pages 271-288.
    16. Taleb, Mushtaq & Khalid, Ruzelan & Ramli, Razamin & Ghasemi, Mohammad Reza & Ignatius, Joshua, 2022. "An integrated bi-objective data envelopment analysis model for measuring returns to scale," European Journal of Operational Research, Elsevier, vol. 296(3), pages 967-979.
    17. Rui Zhao & Han Su & Xiaolang Chen & Yanni Yu, 2016. "Commercially Available Materials Selection in Sustainable Design: An Integrated Multi-Attribute Decision Making Approach," Sustainability, MDPI, vol. 8(1), pages 1-15, January.
    18. Büyüközkan, Gülçin & Güleryüz, Sezin, 2016. "An integrated DEMATEL-ANP approach for renewable energy resources selection in Turkey," International Journal of Production Economics, Elsevier, vol. 182(C), pages 435-448.
    19. Yuan, Jiahai & Li, Xinying & Xu, Chuanbo & Zhao, Changhong & Liu, Yuanxin, 2019. "Investment risk assessment of coal-fired power plants in countries along the Belt and Road initiative based on ANP-Entropy-TODIM method," Energy, Elsevier, vol. 176(C), pages 623-640.
    20. Christian Growitsch & Simon Paulus & Heike Wetzel, 2017. "Competition and Regulation as a Means of Reducing CO2 Emissions: Experience from U.S. Fossil Fuel Power Plants," MAGKS Papers on Economics 201709, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:75:y:2014:i:c:p:463-473. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.