IDEAS home Printed from https://ideas.repec.org/p/zbw/vfsc17/168284.html
   My bibliography  Save this paper

Competition and Regulation as a Means of Reducing CO2 Emissions: Experience from U.S. Fossil Fuel Power Plants

Author

Listed:
  • Growitsch, Christian
  • Paulus, Simon
  • Wetzel, Heike

Abstract

In this article, we analyze the relative CO2 emission performance across 48 states in the U.S. using a two-stage empirical approach. In the first stage, we identify the states that followed best practice by applying benchmarking techniques. In the second stage, we regress our CO2 emission performance indicators on the state-specific national gas prices, the states’ CO2 regulatory policies and a number of other state-specific factors in order to identify the main drivers of the developments.

Suggested Citation

  • Growitsch, Christian & Paulus, Simon & Wetzel, Heike, 2017. "Competition and Regulation as a Means of Reducing CO2 Emissions: Experience from U.S. Fossil Fuel Power Plants," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168284, Verein für Socialpolitik / German Economic Association.
  • Handle: RePEc:zbw:vfsc17:168284
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/168284/1/VfS-2017-pid-3576.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Pastor, Jesus T. & Lovell, C.A. Knox, 2005. "A global Malmquist productivity index," Economics Letters, Elsevier, vol. 88(2), pages 266-271, August.
    2. Krupnick, Alan & Wang, Zhongmin & Wang, Yushuang, 2013. "Sector Effects of the Shale Gas Revolution in the United States," RFF Working Paper Series dp-13-21, Resources for the Future.
    3. Oggioni, G. & Riccardi, R. & Toninelli, R., 2011. "Eco-efficiency of the world cement industry: A data envelopment analysis," Energy Policy, Elsevier, vol. 39(5), pages 2842-2854, May.
    4. Welch, Eric & Barnum, Darold, 2009. "Joint environmental and cost efficiency analysis of electricity generation," Ecological Economics, Elsevier, vol. 68(8-9), pages 2336-2343, June.
    5. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    6. Sueyoshi, Toshiyuki & Goto, Mika & Ueno, Takahiro, 2010. "Performance analysis of US coal-fired power plants by measuring three DEA efficiencies," Energy Policy, Elsevier, vol. 38(4), pages 1675-1688, April.
    7. Sueyoshi, Toshiyuki & Goto, Mika, 2013. "Returns to scale vs. damages to scale in data envelopment analysis: An impact of U.S. clean air act on coal-fired power plants," Omega, Elsevier, vol. 41(2), pages 164-175.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    2. Sueyoshi, Toshiyuki & Goto, Mika, 2015. "Environmental assessment on coal-fired power plants in U.S. north-east region by DEA non-radial measurement," Energy Economics, Elsevier, vol. 50(C), pages 125-139.
    3. Ramli, Noor Asiah & Munisamy, Susila, 2015. "Eco-efficiency in greenhouse emissions among manufacturing industries: A range adjusted measure," Economic Modelling, Elsevier, vol. 47(C), pages 219-227.
    4. Sueyoshi, Toshiyuki & Goto, Mika, 2014. "Investment strategy for sustainable society by development of regional economies and prevention of industrial pollutions in Japanese manufacturing sectors," Energy Economics, Elsevier, vol. 42(C), pages 299-312.
    5. Zhou, P. & Ang, B.W. & Wang, H., 2012. "Energy and CO2 emission performance in electricity generation: A non-radial directional distance function approach," European Journal of Operational Research, Elsevier, vol. 221(3), pages 625-635.
    6. Sueyoshi, Toshiyuki & Goto, Mika, 2014. "Environmental assessment for corporate sustainability by resource utilization and technology innovation: DEA radial measurement on Japanese industrial sectors," Energy Economics, Elsevier, vol. 46(C), pages 295-307.
    7. Seifert, Stefan & Cullmann, Astrid & von Hirschhausen, Christian, 2016. "Technical efficiency and CO2 reduction potentials — An analysis of the German electricity and heat generating sector," Energy Economics, Elsevier, vol. 56(C), pages 9-19.
    8. Sueyoshi, Toshiyuki & Goto, Mika, 2012. "Returns to scale and damages to scale on U.S. fossil fuel power plants: Radial and non-radial approaches for DEA environmental assessment," Energy Economics, Elsevier, vol. 34(6), pages 2240-2259.
    9. Sueyoshi, Toshiyuki & Goto, Mika, 2015. "DEA environmental assessment in time horizon: Radial approach for Malmquist index measurement on petroleum companies," Energy Economics, Elsevier, vol. 51(C), pages 329-345.
    10. Zhang, Ning & Zhou, P. & Choi, Yongrok, 2013. "Energy efficiency, CO2 emission performance and technology gaps in fossil fuel electricity generation in Korea: A meta-frontier non-radial directional distance functionanalysis," Energy Policy, Elsevier, vol. 56(C), pages 653-662.
    11. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    12. Sueyoshi, Toshiyuki & Goto, Mika, 2016. "Undesirable congestion under natural disposability and desirable congestion under managerial disposability in U.S. electric power industry measured by DEA environmental assessment," Energy Economics, Elsevier, vol. 55(C), pages 173-188.
    13. Sueyoshi, Toshiyuki & Goto, Mika, 2015. "Japanese fuel mix strategy after disaster of Fukushima Daiichi nuclear power plant: Lessons from international comparison among industrial nations measured by DEA environmental assessment in time hori," Energy Economics, Elsevier, vol. 52(PA), pages 87-103.
    14. Emrouznejad, Ali & Yang, Guo-liang, 2016. "CO2 emissions reduction of Chinese light manufacturing industries: A novel RAM-based global Malmquist–Luenberger productivity index," Energy Policy, Elsevier, vol. 96(C), pages 397-410.
    15. Ke Wang & Yujiao Xian & Yi-Ming Wei & Zhimin Huang, 2016. "Sources of carbon productivity change: A decomposition and disaggregation analysis based on global Luenberger productivity indicator and endogenous directional distance function," CEEP-BIT Working Papers 91, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    16. Hampf, Benjamin & Rødseth, Kenneth Løvold, 2019. "Environmental efficiency measurement with heterogeneous input quality: A nonparametric analysis of U.S. power plants," Energy Economics, Elsevier, vol. 81(C), pages 610-625.
    17. Ke Wang & Jieming Zhang & Yi-Ming Wei, 2017. "Operational and environmental performance in China¡¯s thermal power industry: Taking an effectiveness measure as complement to an efficiency measure," CEEP-BIT Working Papers 100, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    18. Sueyoshi, Toshiyuki & Goto, Mika, 2012. "Returns to Scale and Damages to Scale with Strong Complementary Slackness Conditions in DEA Assessment: Japanese Corporate Effort on Environment Protection," Energy Economics, Elsevier, vol. 34(5), pages 1422-1434.
    19. Hampf, Benjamin, 2018. "Cost and environmental efficiency of U.S. electricity generation: Accounting for heterogeneous inputs and transportation costs," Energy, Elsevier, vol. 163(C), pages 932-941.
    20. Du, Kerui & Lu, Huang & Yu, Kun, 2014. "Sources of the potential CO2 emission reduction in China: A nonparametric metafrontier approach," Applied Energy, Elsevier, vol. 115(C), pages 491-501.

    More about this item

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:vfsc17:168284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/vfsocea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.