IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v73y2014icp204-213.html
   My bibliography  Save this article

Selection and optimization of pure and mixed working fluids for low grade heat utilization using organic Rankine cycles

Author

Listed:
  • Andreasen, J.G.
  • Larsen, U.
  • Knudsen, T.
  • Pierobon, L.
  • Haglind, F.

Abstract

We present a generic methodology for organic Rankine cycle optimization, where the working fluid is included as an optimization parameter, in order to maximize the net power output of the cycle. The method is applied on two optimization cases with hot fluid inlet temperatures at 120 °C and 90 °C. Pure fluids and mixtures are compared to see how mixed working fluids affect performance and important design parameters. The results indicate that mixed working fluids can increase the net power output of the cycle, while reducing the pressure levels. The maximum net power output is obtained by fluids with a critical temperature close to half of the hot fluid inlet temperature. For some mixtures we find the maximum net power when the temperature glide of condensation matches the temperature increase of the cooling water, while for other mixtures there are large differences between these two parameters. Ethane is a fluid that obtains a large net power increase when used in mixtures. Compared to pure ethane, an optimized ethane/propane mixture attains a 12.9% net power increase when the hot fluid inlet temperature is 120 °C and a 11.1% net power increase when the hot fluid inlet temperature is 90 °C.

Suggested Citation

  • Andreasen, J.G. & Larsen, U. & Knudsen, T. & Pierobon, L. & Haglind, F., 2014. "Selection and optimization of pure and mixed working fluids for low grade heat utilization using organic Rankine cycles," Energy, Elsevier, vol. 73(C), pages 204-213.
  • Handle: RePEc:eee:energy:v:73:y:2014:i:c:p:204-213
    DOI: 10.1016/j.energy.2014.06.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214007105
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.06.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Astolfi, Marco & Romano, Matteo C. & Bombarda, Paola & Macchi, Ennio, 2014. "Binary ORC (Organic Rankine Cycles) power plants for the exploitation of medium–low temperature geothermal sources – Part B: Techno-economic optimization," Energy, Elsevier, vol. 66(C), pages 435-446.
    2. Heberle, Florian & Preißinger, Markus & Brüggemann, Dieter, 2012. "Zeotropic mixtures as working fluids in Organic Rankine Cycles for low-enthalpy geothermal resources," Renewable Energy, Elsevier, vol. 37(1), pages 364-370.
    3. Tchanche, Bertrand F. & Lambrinos, Gr. & Frangoudakis, A. & Papadakis, G., 2011. "Low-grade heat conversion into power using organic Rankine cycles – A review of various applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3963-3979.
    4. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    5. Chys, M. & van den Broek, M. & Vanslambrouck, B. & De Paepe, M., 2012. "Potential of zeotropic mixtures as working fluids in organic Rankine cycles," Energy, Elsevier, vol. 44(1), pages 623-632.
    6. Astolfi, Marco & Romano, Matteo C. & Bombarda, Paola & Macchi, Ennio, 2014. "Binary ORC (organic Rankine cycles) power plants for the exploitation of medium–low temperature geothermal sources – Part A: Thermodynamic optimization," Energy, Elsevier, vol. 66(C), pages 423-434.
    7. Larsen, Ulrik & Pierobon, Leonardo & Haglind, Fredrik & Gabrielii, Cecilia, 2013. "Design and optimisation of organic Rankine cycles for waste heat recovery in marine applications using the principles of natural selection," Energy, Elsevier, vol. 55(C), pages 803-812.
    8. Larsen, Ulrik & Pierobon, Leonardo & Wronski, Jorrit & Haglind, Fredrik, 2014. "Multiple regression models for the prediction of the maximum obtainable thermal efficiency of organic Rankine cycles," Energy, Elsevier, vol. 65(C), pages 503-510.
    9. Angelino, Gianfranco & Colonna di Paliano, Piero, 1998. "Multicomponent Working Fluids For Organic Rankine Cycles (ORCs)," Energy, Elsevier, vol. 23(6), pages 449-463.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schilling, J. & Entrup, M. & Hopp, M. & Gross, J. & Bardow, A., 2021. "Towards optimal mixtures of working fluids: Integrated design of processes and mixtures for Organic Rankine Cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Jesper G. Andreasen & Martin R. Kærn & Leonardo Pierobon & Ulrik Larsen & Fredrik Haglind, 2016. "Multi-Objective Optimization of Organic Rankine Cycle Power Plants Using Pure and Mixed Working Fluids," Energies, MDPI, vol. 9(5), pages 1-15, April.
    3. Steven Lecompte & Sanne Lemmens & Henk Huisseune & Martijn Van den Broek & Michel De Paepe, 2015. "Multi-Objective Thermo-Economic Optimization Strategy for ORCs Applied to Subcritical and Transcritical Cycles for Waste Heat Recovery," Energies, MDPI, vol. 8(4), pages 1-28, April.
    4. Lecompte, Steven & Huisseune, Henk & van den Broek, Martijn & Vanslambrouck, Bruno & De Paepe, Michel, 2015. "Review of organic Rankine cycle (ORC) architectures for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 448-461.
    5. Bamorovat Abadi, Gholamreza & Kim, Kyung Chun, 2017. "Investigation of organic Rankine cycles with zeotropic mixtures as a working fluid: Advantages and issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1000-1013.
    6. Braimakis, Konstantinos & Karellas, Sotirios, 2017. "Integrated thermoeconomic optimization of standard and regenerative ORC for different heat source types and capacities," Energy, Elsevier, vol. 121(C), pages 570-598.
    7. Braimakis, Konstantinos & Karellas, Sotirios, 2018. "Exergetic optimization of double stage Organic Rankine Cycle (ORC)," Energy, Elsevier, vol. 149(C), pages 296-313.
    8. Mondejar, M.E. & Andreasen, J.G. & Pierobon, L. & Larsen, U. & Thern, M. & Haglind, F., 2018. "A review of the use of organic Rankine cycle power systems for maritime applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 126-151.
    9. Sánchez, Carlos J.N. & da Silva, Alexandre K., 2018. "Technical and environmental analysis of transcritical Rankine cycles operating with numerous CO2 mixtures," Energy, Elsevier, vol. 142(C), pages 180-190.
    10. Vivian, Jacopo & Manente, Giovanni & Lazzaretto, Andrea, 2015. "A general framework to select working fluid and configuration of ORCs for low-to-medium temperature heat sources," Applied Energy, Elsevier, vol. 156(C), pages 727-746.
    11. Oyewunmi, Oyeniyi A. & Taleb, Aly I. & Haslam, Andrew J. & Markides, Christos N., 2016. "On the use of SAFT-VR Mie for assessing large-glide fluorocarbon working-fluid mixtures in organic Rankine cycles," Applied Energy, Elsevier, vol. 163(C), pages 263-282.
    12. Patrick Linke & Athanasios I. Papadopoulos & Panos Seferlis, 2015. "Systematic Methods for Working Fluid Selection and the Design, Integration and Control of Organic Rankine Cycles—A Review," Energies, MDPI, vol. 8(6), pages 1-47, May.
    13. Lee, Ung & Mitsos, Alexander, 2017. "Optimal multicomponent working fluid of organic Rankine cycle for exergy transfer from liquefied natural gas regasification," Energy, Elsevier, vol. 127(C), pages 489-501.
    14. Florian Heberle & Dieter Brüggemann, 2016. "Thermo-Economic Analysis of Zeotropic Mixtures and Pure Working Fluids in Organic Rankine Cycles for Waste Heat Recovery," Energies, MDPI, vol. 9(4), pages 1-16, March.
    15. Imran, Muhammad & Usman, Muhammad & Park, Byung-Sik & Yang, Youngmin, 2016. "Comparative assessment of Organic Rankine Cycle integration for low temperature geothermal heat source applications," Energy, Elsevier, vol. 102(C), pages 473-490.
    16. Jesper Graa Andreasen & Martin Ryhl Kærn & Fredrik Haglind, 2019. "Assessment of Methods for Performance Comparison of Pure and Zeotropic Working Fluids for Organic Rankine Cycle Power Systems," Energies, MDPI, vol. 12(9), pages 1-25, May.
    17. Markus Preißinger & Dieter Brüggemann, 2017. "Thermoeconomic Evaluation of Modular Organic Rankine Cycles for Waste Heat Recovery over a Broad Range of Heat Source Temperatures and Capacities," Energies, MDPI, vol. 10(3), pages 1-23, February.
    18. Florian Heberle & Dieter Brüggemann, 2015. "Thermo-Economic Evaluation of Organic Rankine Cycles for Geothermal Power Generation Using Zeotropic Mixtures," Energies, MDPI, vol. 8(3), pages 1-28, March.
    19. Satanphol, K. & Pridasawas, W. & Suphanit, B., 2017. "A study on optimal composition of zeotropic working fluid in an Organic Rankine Cycle (ORC) for low grade heat recovery," Energy, Elsevier, vol. 123(C), pages 326-339.
    20. Li, Jing & Alvi, Jahan Zeb & Pei, Gang & Su, Yuehong & Li, Pengcheng & Gao, Guangtao & Ji, Jie, 2016. "Modelling of organic Rankine cycle efficiency with respect to the equivalent hot side temperature," Energy, Elsevier, vol. 115(P1), pages 668-683.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:73:y:2014:i:c:p:204-213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.