IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v64y2014icp69-94.html
   My bibliography  Save this article

Bejan's heatlines and numerical visualization of convective heat flow in differentially heated enclosures with concave/convex side walls

Author

Listed:
  • Biswal, Pratibha
  • Basak, Tanmay

Abstract

Numerical simulation for natural convection flow in fluid filled enclosures with curved side walls is carried out for various fluids with several Prandtl numbers (Pr = 0.015, 0.7 and 1000) in the range of Rayleigh numbers (Ra = 103–106) for various cases based on convexity/concavity of the curved side walls using the Galerkin finite element method. Results show that patterns of streamlines and heatlines are largely influenced by wall curvature in concave cases. At low Ra, the enclosure with highest wall concavity offers largest heat transfer rate. On the other hand, at high Ra, heatline cells are segregated and thus heat transfer rate was observed to be least for highest concavity case. In convex cases, no significant variations in heat and flow distributions are observed with increase in convexity of side walls. At high Ra and Pr, heat transfer rate is observed to be enhanced greatly with increase in wall convexity. Results indicate that enhanced thermal mixing is observed in convex cases compared to concave cases. Comparative study of average Nusselt number of a standard square enclosure with concave and convex cases is also carried out. In conduction dominant regime (low Ra), concave cases exhibit higher heat transfer rates compared to square enclosure. At high Ra, low Pr, concave cases with P1P1′=0.4 is advantageous based on flow separation and enhanced local heat transfer rates.

Suggested Citation

  • Biswal, Pratibha & Basak, Tanmay, 2014. "Bejan's heatlines and numerical visualization of convective heat flow in differentially heated enclosures with concave/convex side walls," Energy, Elsevier, vol. 64(C), pages 69-94.
  • Handle: RePEc:eee:energy:v:64:y:2014:i:c:p:69-94
    DOI: 10.1016/j.energy.2013.10.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213008840
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.10.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Antar, Mohamed A., 2010. "Thermal radiation role in conjugate heat transfer across a multiple-cavity building block," Energy, Elsevier, vol. 35(8), pages 3508-3516.
    2. Kaluri, Ram Satish & Basak, Tanmay, 2010. "Analysis of distributed thermal management policy for energy-efficient processing of materials by natural convection," Energy, Elsevier, vol. 35(12), pages 5093-5107.
    3. Singh, A.K. & Goerke, U.-J. & Kolditz, O., 2011. "Numerical simulation of non-isothermal compositional gas flow: Application to carbon dioxide injection into gas reservoirs," Energy, Elsevier, vol. 36(5), pages 3446-3458.
    4. Hami, K. & Draoui, B. & Hami, O., 2012. "The thermal performances of a solar wall," Energy, Elsevier, vol. 39(1), pages 11-16.
    5. Barthels, H. & Rehm, W. & Jahn, W., 1991. "Theoretical and experimental investigations into the safety behavior of small HTRs under natural convection conditions," Energy, Elsevier, vol. 16(1), pages 371-380.
    6. Alawadhi, Esam M., 2011. "Cooling process of water in a horizontal circular enclosure subjected to non-uniform boundary conditions," Energy, Elsevier, vol. 36(1), pages 586-594.
    7. da Silva, A.K. & Lorente, S. & Bejan, A., 2006. "Constructal multi-scale structures for maximal heat transfer density," Energy, Elsevier, vol. 31(5), pages 620-635.
    8. Kheireddine, A.S. & Sanda, M.Houla & Chaturvedi, S.K. & Mohieldin, T.O., 1997. "Numerical prediction of pressure loss coefficient and induced mass flux for laminal natural convective flow in a vertical channel," Energy, Elsevier, vol. 22(4), pages 413-423.
    9. Magalhães Sobrinho, Pedro & Carvalho, João A. & Luz Silveira, José & Magalhães Filho, Paulo, 2000. "Analysis of aluminum plates under heating in electrical and natural gas furnaces," Energy, Elsevier, vol. 25(10), pages 975-987.
    10. El-Sebaii, A.A. & Aboul-Enein, S. & Ramadan, M.R.I. & El-Gohary, H.G., 2002. "Empirical correlations for drying kinetics of some fruits and vegetables," Energy, Elsevier, vol. 27(9), pages 845-859.
    11. Xamán, J. & Ortiz, A. & Álvarez, G. & Chávez, Y., 2011. "Effect of a contaminant source (CO2) on the air quality in a ventilated room," Energy, Elsevier, vol. 36(5), pages 3302-3318.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anandalakshmi, R. & Kaluri, Ram Satish & Basak, Tanmay, 2011. "Heatline based thermal management for natural convection within right-angled porous triangular enclosures with various thermal conditions of walls," Energy, Elsevier, vol. 36(8), pages 4879-4896.
    2. Kaluri, Ram Satish & Basak, Tanmay, 2010. "Analysis of distributed thermal management policy for energy-efficient processing of materials by natural convection," Energy, Elsevier, vol. 35(12), pages 5093-5107.
    3. Basak, Tanmay & Anandalakshmi, R. & Kumar, Pushpendra & Roy, S., 2012. "Entropy generation vs energy flow due to natural convection in a trapezoidal cavity with isothermal and non-isothermal hot bottom wall," Energy, Elsevier, vol. 37(1), pages 514-532.
    4. Liu, Di & Zhao, Fu-Yun & Wang, Han-Qing, 2011. "Passive heat and moisture removal from a natural vented enclosure with a massive wall," Energy, Elsevier, vol. 36(5), pages 2867-2882.
    5. Adams, Benjamin M. & Kuehn, Thomas H. & Bielicki, Jeffrey M. & Randolph, Jimmy B. & Saar, Martin O., 2014. "On the importance of the thermosiphon effect in CPG (CO2 plume geothermal) power systems," Energy, Elsevier, vol. 69(C), pages 409-418.
    6. Chi, Fang'ai & Xu, Liming & Peng, Changhai, 2020. "Integration of completely passive cooling and heating systems with daylighting function into courtyard building towards energy saving," Applied Energy, Elsevier, vol. 266(C).
    7. Cui, Guodong & Zhang, Liang & Ren, Bo & Enechukwu, Chioma & Liu, Yanmin & Ren, Shaoran, 2016. "Geothermal exploitation from depleted high temperature gas reservoirs via recycling supercritical CO2: Heat mining rate and salt precipitation effects," Applied Energy, Elsevier, vol. 183(C), pages 837-852.
    8. Guillermo Efren Ovando-Chacon & Sandy Luz Ovando-Chacon & Abelardo Rodríguez-León & Mario Díaz-González, 2023. "Numerical Study of Indoor Air Quality in a University Professor’s Office," Sustainability, MDPI, vol. 15(5), pages 1-19, February.
    9. Sara Brito-Coimbra & Daniel Aelenei & Maria Gloria Gomes & Antonio Moret Rodrigues, 2021. "Building Façade Retrofit with Solar Passive Technologies: A Literature Review," Energies, MDPI, vol. 14(6), pages 1-18, March.
    10. Gulcimen, Fevzi & Karakaya, Hakan & Durmus, Aydın, 2016. "Drying of sweet basil with solar air collectors," Renewable Energy, Elsevier, vol. 93(C), pages 77-86.
    11. Fuqiang Qiu & Baoguo Li & Taoping Xu & Dugui He, 2022. "Drying behavior and mathematical modeling of Tenebrio molitor using a closed system heat pump dryer [Evaluation of Tenebrio molitor larvae as an alternative food source]," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 841-849.
    12. Zhang, Lili & Hou, Yuyao & Liu, Zu’an & Du, Junfei & Xu, Long & Zhang, Guomin & Shi, Long, 2020. "Trombe wall for a residential building in Sichuan-Tibet alpine valley – A case study," Renewable Energy, Elsevier, vol. 156(C), pages 31-46.
    13. Oliveira, Flávio A.D. & Carvalho, João A. & Sobrinho, Pedro M. & de Castro, André, 2014. "Analysis of oxy-fuel combustion as an alternative to combustion with air in metal reheating furnaces," Energy, Elsevier, vol. 78(C), pages 290-297.
    14. Luo, Feng & Xu, Rui-Na & Jiang, Pei-Xue, 2013. "Numerical investigation of the influence of vertical permeability heterogeneity in stratified formation and of injection/production well perforation placement on CO2 geological storage with enhanced C," Applied Energy, Elsevier, vol. 102(C), pages 1314-1323.
    15. Ziabakhsh-Ganji, Zaman & Kooi, Henk, 2014. "Sensitivity of Joule–Thomson cooling to impure CO2 injection in depleted gas reservoirs," Applied Energy, Elsevier, vol. 113(C), pages 434-451.
    16. Qingsong Ma & Hiroatsu Fukuda & Takumi Kobatake & Myonghyang Lee, 2017. "Study of a Double-Layer Trombe Wall Assisted by a Temperature-Controlled DC Fan for Heating Seasons," Sustainability, MDPI, vol. 9(12), pages 1-12, November.
    17. Das, Debayan & Lukose, Leo & Basak, Tanmay, 2018. "Role of multiple solar heaters along the walls for the thermal management during natural convection in square and triangular cavities," Renewable Energy, Elsevier, vol. 121(C), pages 205-229.
    18. Baïri, A., 2008. "Transient thermal characteristics of airborne electronic equipment with discrete hot bands in square cavities," Applied Energy, Elsevier, vol. 85(10), pages 951-967, October.
    19. Jerzy Szyszka & Piero Bevilacqua & Roberto Bruno, 2020. "An Innovative Trombe Wall for Winter Use: The Thermo-Diode Trombe Wall," Energies, MDPI, vol. 13(9), pages 1-15, May.
    20. Ho, C.D. & Chen, T.C., 2006. "The recycle effect on the collector efficiency improvement of double-pass sheet-and-tube solar water heaters with external recycle," Renewable Energy, Elsevier, vol. 31(7), pages 953-970.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:64:y:2014:i:c:p:69-94. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.