IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v35y2010i2p464-470.html
   My bibliography  Save this article

Experimental studies on bubble pump operated diffusion absorption machine based on light hydrocarbons for solar cooling

Author

Listed:
  • Ben Ezzine, N.
  • Garma, R.
  • Bourouis, M.
  • Bellagi, A.

Abstract

An experimental investigation of an air-cooled diffusion absorption machine operating with a binary light hydrocarbon mixture (C4H10/C9H20) as working fluids and helium as pressure equalizing inert gas is presented in this paper. The machine, made of copper an available and very good heat conducting metal, is intended to be solar powered heat from flat plate or common evacuated tube collectors. The cooling capacity is 40–47W respectively for 9 and 11°C chilled water temperature. Cold is produced at temperatures between −10 and +10°C for a driving temperature in the range of 120–150°C.

Suggested Citation

  • Ben Ezzine, N. & Garma, R. & Bourouis, M. & Bellagi, A., 2010. "Experimental studies on bubble pump operated diffusion absorption machine based on light hydrocarbons for solar cooling," Renewable Energy, Elsevier, vol. 35(2), pages 464-470.
  • Handle: RePEc:eee:renene:v:35:y:2010:i:2:p:464-470
    DOI: 10.1016/j.renene.2009.07.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148109003152
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2009.07.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hassan, H.Z. & Mohamad, A.A., 2012. "A review on solar cold production through absorption technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5331-5348.
    2. Baby-Jean Robert Mungyeko Bisulandu & Rami Mansouri & Adrian Ilinca, 2023. "Diffusion Absorption Refrigeration Systems: An Overview of Thermal Mechanisms and Models," Energies, MDPI, vol. 16(9), pages 1-36, April.
    3. Lee, Gawon & Choi, Hyung Won & Kang, Yong Tae, 2021. "Cycle performance analysis and experimental validation of a novel diffusion absorption refrigeration system using R600a/n-octane," Energy, Elsevier, vol. 217(C).
    4. Lee, Jin Ki & Lee, Kyoung-Ryul & Kang, Yong Tae, 2014. "Development of binary nanoemulsion to apply for diffusion absorption refrigerator as a new refrigerant," Energy, Elsevier, vol. 78(C), pages 693-700.
    5. Yıldız, Abdullah & Ersöz, Mustafa Ali, 2013. "Energy and exergy analyses of the diffusion absorption refrigeration system," Energy, Elsevier, vol. 60(C), pages 407-415.
    6. Taieb, Ahmed & Mejbri, Khalifa & Bellagi, Ahmed, 2016. "Detailed thermodynamic analysis of a diffusion-absorption refrigeration cycle," Energy, Elsevier, vol. 115(P1), pages 418-434.
    7. Rodríguez-Muñoz, J.L. & Belman-Flores, J.M., 2014. "Review of diffusion–absorption refrigeration technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 145-153.
    8. Kim, Gahyeong & Choi, Hyung Won & Lee, Gawon & Lee, Jang Seok & Kang, Yong Tae, 2020. "Experimental study on diffusion absorption refrigeration systems with low GWP refrigerants," Energy, Elsevier, vol. 201(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:35:y:2010:i:2:p:464-470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.