IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v60y2013icp222-229.html
   My bibliography  Save this article

Effect of antioxidants on physico-chemical properties of EURO-III HSD (high speed diesel) and Jatropha biodiesel blends

Author

Listed:
  • Lamba, Bhawna Yadav
  • Joshi, Girdhar
  • Tiwari, Avanish K.
  • Rawat, Devendra Singh
  • Mallick, Sudesh

Abstract

The stability of fuel during storage is an important consideration for bulk users. Storage instability leads to solids formation which can plug nozzles and filters. This work focuses on the effect of the addition of antioxidants on EURO-III and Jatropha Biodiesel blends. The changes in physico-chemical properties were observed for these blends after addition of antioxidants. BHA (butylated hydroxy anisole), BHT (butylatedhydroxy toluene), TBHQ (tert-butylhydroxyquinone) and DPA (diphenylamine) were the antioxidants used for this study. The rate of change in kinematic viscosity and density of EURO-III-Jatropha Biodiesel blends with antioxidants were found to be less as compared to the neat samples. The oxidation stability of the neat samples, after addition of antioxidants, was found to increase significantly. It was also observed that addition of antioxidant significantly improved the oxidation stability of biodiesel-diesel fuel blends however in some case may act as pro-oxidants. The results showed that the addition of an antioxidant to diesel fuel blends influenced beneficially most of the important fuel properties.

Suggested Citation

  • Lamba, Bhawna Yadav & Joshi, Girdhar & Tiwari, Avanish K. & Rawat, Devendra Singh & Mallick, Sudesh, 2013. "Effect of antioxidants on physico-chemical properties of EURO-III HSD (high speed diesel) and Jatropha biodiesel blends," Energy, Elsevier, vol. 60(C), pages 222-229.
  • Handle: RePEc:eee:energy:v:60:y:2013:i:c:p:222-229
    DOI: 10.1016/j.energy.2013.08.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213006804
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.08.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sarin, Amit & Arora, Rajneesh & Singh, N.P. & Sarin, Rakesh & Malhotra, R.K., 2010. "Blends of biodiesels synthesized from non-edible and edible oils: Influence on the OS (oxidation stability)," Energy, Elsevier, vol. 35(8), pages 3449-3453.
    2. Karavalakis, Georgios & Hilari, Despina & Givalou, Lida & Karonis, Dimitrios & Stournas, Stamos, 2011. "Storage stability and ageing effect of biodiesel blends treated with different antioxidants," Energy, Elsevier, vol. 36(1), pages 369-374.
    3. Chen, Yi-Hung & Chen, Jhih-Hong & Luo, Yu-Min & Shang, Neng-Chou & Chang, Cheng-Hsin & Chang, Ching-Yuan & Chiang, Pen-Chi & Shie, Je-Lueng, 2011. "Property modification of jatropha oil biodiesel by blending with other biodiesels or adding antioxidants," Energy, Elsevier, vol. 36(7), pages 4415-4421.
    4. Alptekin, Ertan & Canakci, Mustafa, 2008. "Determination of the density and the viscosities of biodiesel–diesel fuel blends," Renewable Energy, Elsevier, vol. 33(12), pages 2623-2630.
    5. Sarin, Amit & Arora, Rajneesh & Singh, N.P. & Sharma, Meeta & Malhotra, R.K., 2009. "Influence of metal contaminants on oxidation stability of Jatropha biodiesel," Energy, Elsevier, vol. 34(9), pages 1271-1275.
    6. Sarin, Amit & Singh, N.P. & Sarin, Rakesh & Malhotra, R.K., 2010. "Natural and synthetic antioxidants: Influence on the oxidative stability of biodiesel synthesized from non-edible oil," Energy, Elsevier, vol. 35(12), pages 4645-4648.
    7. Leung, Dennis Y.C. & Wu, Xuan & Leung, M.K.H., 2010. "A review on biodiesel production using catalyzed transesterification," Applied Energy, Elsevier, vol. 87(4), pages 1083-1095, April.
    8. Shahabuddin, M. & Kalam, M.A. & Masjuki, H.H. & Bhuiya, M.M.K. & Mofijur, M., 2012. "An experimental investigation into biodiesel stability by means of oxidation and property determination," Energy, Elsevier, vol. 44(1), pages 616-622.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joshi, Girdhar & Pandey, Jitendra K. & Rana, Sravendra & Rawat, Devendra S., 2017. "Challenges and opportunities for the application of biofuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 850-866.
    2. Roveda, Ana Carolina & Comin, Marina & Caires, Anderson Rodrigues Lima & Ferreira, Valdir Souza & Trindade, Magno Aparecido Gonçalves, 2016. "Thermal stability enhancement of biodiesel induced by a synergistic effect between conventional antioxidants and an alternative additive," Energy, Elsevier, vol. 109(C), pages 260-265.
    3. Sorate, Kamalesh A. & Bhale, Purnanand V., 2015. "Biodiesel properties and automotive system compatibility issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 777-798.
    4. Abhirup Khanna & Bhawna Yadav Lamba & Sapna Jain & Vadim Bolshev & Dmitry Budnikov & Vladimir Panchenko & Alexandr Smirnov, 2023. "Biodiesel Production from Jatropha: A Computational Approach by Means of Artificial Intelligence and Genetic Algorithm," Sustainability, MDPI, vol. 15(12), pages 1-33, June.
    5. Rawat, Devendra S. & Joshi, Girdhar & Lamba, Bhawna Y. & Tiwari, Avanish K. & Kumar, Pankaj, 2015. "The effect of binary antioxidant proportions on antioxidant synergy and oxidation stability of Jatropha and Karanja biodiesels," Energy, Elsevier, vol. 84(C), pages 643-655.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahabuddin, M. & Kalam, M.A. & Masjuki, H.H. & Bhuiya, M.M.K. & Mofijur, M., 2012. "An experimental investigation into biodiesel stability by means of oxidation and property determination," Energy, Elsevier, vol. 44(1), pages 616-622.
    2. Yaakob, Zahira & Narayanan, Binitha N. & Padikkaparambil, Silija & Unni K., Surya & Akbar P., Mohammed, 2014. "A review on the oxidation stability of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 136-153.
    3. Sundus, F. & Fazal, M.A. & Masjuki, H.H., 2017. "Tribology with biodiesel: A study on enhancing biodiesel stability and its fuel properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 399-412.
    4. Rizwanul Fattah, I.M. & Masjuki, H.H. & Kalam, M.A. & Hazrat, M.A. & Masum, B.M. & Imtenan, S. & Ashraful, A.M., 2014. "Effect of antioxidants on oxidation stability of biodiesel derived from vegetable and animal based feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 356-370.
    5. Sorate, Kamalesh A. & Bhale, Purnanand V., 2015. "Biodiesel properties and automotive system compatibility issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 777-798.
    6. Saluja, Rajesh Kumar & Kumar, Vineet & Sham, Radhey, 2016. "Stability of biodiesel – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 866-881.
    7. Bukkarapu, Kiran Raj & Krishnasamy, Anand, 2022. "A critical review on available models to predict engine fuel properties of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    8. Roveda, Ana Carolina & Comin, Marina & Caires, Anderson Rodrigues Lima & Ferreira, Valdir Souza & Trindade, Magno Aparecido Gonçalves, 2016. "Thermal stability enhancement of biodiesel induced by a synergistic effect between conventional antioxidants and an alternative additive," Energy, Elsevier, vol. 109(C), pages 260-265.
    9. Agarwal, Swati & Kumari, Sonu & Mudgal, Anurag & Khan, Suphiya, 2020. "Green synthesized nanoadditives in jojoba biodiesel-diesel blends: An improvement of engine performance and emission," Renewable Energy, Elsevier, vol. 147(P1), pages 1836-1844.
    10. Kalam, M.A. & Ahamed, J.U. & Masjuki, H.H., 2012. "Land availability of Jatropha production in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3999-4007.
    11. Sayyed, Siraj & Das, Randip Kumar & Kulkarni, Kishor, 2022. "Experimental investigation for evaluating the performance and emission characteristics of DICI engine fueled with dual biodiesel-diesel blends of Jatropha, Karanja, Mahua, and Neem," Energy, Elsevier, vol. 238(PB).
    12. Grana, Roberto & Frassoldati, Alessio & Cuoci, Alberto & Faravelli, Tiziano & Ranzi, Eliseo, 2012. "A wide range kinetic modeling study of pyrolysis and oxidation of methyl butanoate and methyl decanoate. Note I: Lumped kinetic model of methyl butanoate and small methyl esters," Energy, Elsevier, vol. 43(1), pages 124-139.
    13. Li, Ruizhi & Wang, Shuang & Zhang, Huicong & Li, Fashe & Sui, Meng, 2022. "Synthesis, antioxidant properties, and oil solubility of a novel ionic liquid [UIM0Y2][C6H2(OH)3COO] in biodiesel," Renewable Energy, Elsevier, vol. 197(C), pages 545-551.
    14. Praveena, V. & Martin, Leenus Jesu & Matijošius, Jonas & Aloui, Fethi & Pugazhendhi, Arivalagan & Varuvel, Edwin Geo, 2024. "A systematic review on biofuel production and utilization from algae and waste feedstocks– a circular economy approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    15. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Hazrat, M.A., 2015. "Prospect of biofuels as an alternative transport fuel in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 331-351.
    16. Wan Ghazali, Wan Nor Maawa & Mamat, Rizalman & Masjuki, H.H. & Najafi, Gholamhassan, 2015. "Effects of biodiesel from different feedstocks on engine performance and emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 585-602.
    17. Sarin, Amit & Singh, N.P. & Sarin, Rakesh & Malhotra, R.K., 2010. "Natural and synthetic antioxidants: Influence on the oxidative stability of biodiesel synthesized from non-edible oil," Energy, Elsevier, vol. 35(12), pages 4645-4648.
    18. Rawat, Devendra S. & Joshi, Girdhar & Lamba, Bhawna Y. & Tiwari, Avanish K. & Kumar, Pankaj, 2015. "The effect of binary antioxidant proportions on antioxidant synergy and oxidation stability of Jatropha and Karanja biodiesels," Energy, Elsevier, vol. 84(C), pages 643-655.
    19. Meher, L.C. & Churamani, C.P. & Arif, Md. & Ahmed, Z. & Naik, S.N., 2013. "Jatropha curcas as a renewable source for bio-fuels—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 397-407.
    20. Jakeria, M.R. & Fazal, M.A. & Haseeb, A.S.M.A., 2014. "Influence of different factors on the stability of biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 154-163.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:60:y:2013:i:c:p:222-229. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.